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Recent advances in micro-machining allow very small cargos, such as single red blood
cells, to be moved by outfitting them with tails made of micrometre-sized paramagnetic
particles yoked together by polymer bridges. When a time-varying magnetic field is
applied to such a filament, it bends from side to side and propels itself through the fluid,
dragging the load behind it. Here, experimental data and a mathematical model are
presented showing the dependence of the swimming speed and direction of the magnetic
micro-swimmer upon tunable parameters, such as the field strength and frequency
and the filament length. The propulsion of the filament arises from the propagation
of bending waves between free and tethered ends: here we show that this gives the micro-
swimmer a gait that is intermediate between a eukaryotic cell and a waggled elastic rod.
Finally, we extract from the model design principles for constructing the fastest
swimming micro-swimmer by tuning experimental parameters.

Keywords: biofluid dynamics; micro-swimming; reciprocal theorem;
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1. Introduction

Experimentation and modelling have shed light on some of the physical
challenges that must be overcome by free-swimming flagellated micro-organisms.
The swimming gaits of such micro-organisms can be split into two primitive
strategies, respectively, those of bacteria and of free-swimming eukaryotic cells,
though the two gaits share a common kinematical basis: the passing of a
deformation wave along an extended force-generating limb or flagellum (Brennen &
Winet 1977). Among bacteria like Escherichia coli, this deformation wave is
propagated by the corkscrewing of bundles of co-rotating rigid helicoidal flagellar
filaments (Berg & Anderson 1971), with each flagellum driven at its base by a
rotatory engine. By contrast, the flagella of eukaryotic cells are internally driven
by the oscillations of dynein motors connecting doublets of microtubules that
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form a stiff backbone to the flagellum. In this case, the propulsive deformation
consisting of a bending wave in a small sliding displacement of two microtubules
is propagated along the flagellum (Brokaw 1972b).

Advances in micromanipulation have enabled direct measurement of the forces
and torques generated in bacterial swimming and inference of swimming
efficiency (Chattopadhyay et al. 2006), allowing theoretical models of locomotion
(Lighthill 1976; Purcell 1997) to be tested. However, a lack of control over or
measurement of the material properties of the axoneme bundle, or of the torques
exerted by the distributed dynein motors, has prohibited the experimental tests
of models for eukaryotic swimming (Machin 1963; Brokaw 1972a; Camalet &
Jülicher 2000). Here, we report on the controlled actuation of a micrometre-sized
magnetically activated artificial flagellum, which provides a direct experimental
test of hydrodynamical models for internally forced flexible flagella.

After a brief description of the magnetic micro-swimmer, first introduced by
Dreyfus et al. (2005), we present a mathematical model for the dynamics of the
propulsive filament (Roper et al. 2006). A combination of numerical and
asymptotic analyses of this model allows an effective comparison between the
propulsion by a magnetically driven filament and a eukaryotic flagellum.
Specifically, we ask whether the magnetic filament generates useable thrust for
locomotion along the whole of its length, like a eukaryotic flagellum (Brennen &
Winet 1977), or whether it instead resembles an elastic rod that is waggled at one
end and generates useable thrust only with the short section of filament
immediately adjacent to the point of application of the force (Wiggins et al. 1998;
Lagomarsino et al. 2003; Lauga 2006).

In this study, we show that the dynamics of the magnetically actuated micro-
swimmer are intermediate between the eukaryotic flagellum and the waggled rod.
In the physically relevant limit of large magnetoelastic numbers (a dimensionless
measure of the ratio of magnetic to elastic bending moments) and moderately
high frequencies, the conformation of the filament is controlled by a balance
between the viscous stresses and the action of the external torque. This balance
should be contrasted with that governing the waggled rod, in which elastic
stresses propagate the bending wave along the rod. Nonetheless, just as for the
waggled rod, the magnetic micro-swimmer generates propulsive force along only
a fraction of its length. Although the confinement length scale is set by the same
physics that determines the propagation of bending waves in a flagellum, the
swimming dynamics have much in common with a waggled rod swimmer,
including exhibiting, in simulations and experiments, a large band of frequencies
over which the swimming speed is almost independent of actuation frequency, as
well as giving identical scalings for the dependence of swimming speed upon
filament length. At the very highest frequencies, elastic stresses start to play a
dominant role in the propagation of the propulsive bending wave, and the
propulsive gait of the micro-swimmer approaches quantitatively the swimming
gait of a waggled rod.

Finally, we use the physical insight thus obtained to tackle the practical
question of determining the combination of material parameters and actuation
conditions, which gives the fastest swimming micro-swimmer. It is shown that a
nearly maximum swimming speed is achieved over a large plateau of values of
the actuation frequency, but that swimming speed near the maximum is sensitive
to the filament length.
Proc. R. Soc. A (2008)
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Figure 1. (a) Deformation of an isolated filament, consisting of 80 particles of 1 mm diameter,
subjected to a uniform field BxZ9 mT and transverse oscillating field with amplitude BaZ8 mT
and frequency fZ20 Hz. Images are taken at 12.5 ms intervals, and the instantaneous direction of
the applied field B is denoted by black-outlined arrows. Annotations show the coordinate system
adopted in §3. (b) Geometry of a cell-tethered magnetic micro-swimmer, including the lubrication
layer thickness, d �, filament to wall separation, h�, and cell radius, a�c.
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2. Experimental realization

Magnetic micro-swimmers are filaments made of superparamagnetic sub-
micrometre diameter spheres, yoked together by polymer bridges. The protocols
for constructing the filaments have been described in previous papers. Chains of
superparamagnetic particles are self-assembled under a strong (approx. 30 mT)
spatially homogeneous magnetic field. Polymer bridges are formed between the
particles in each chain by the addition of short lengths of biotinylated double-
stranded DNA to streptavidin-coated particles of micrometre diameter (Dreyfus
et al. 2005; Koenig et al. 2005) or by adding polyacrylic acid to particles of
diameter 750 nm (Goubault et al. 2003). Cell-tethered swimmers are constructed
from DNA-linked filaments by adding human red blood cells that had been
incubated in biotinylated PEG-NHS during assembly. The length and number of
the polymer linkers in each bridge set the flexibility of the filament. The
flexibility of the chain can be inferred from the examination of arched
conformations that form when the filament is placed initially orthogonal to a
strong uniform field (Goubault et al. 2003).

In order to generate motion in a controlled direction and with a controlled
speed, two magnetic fields are employed. The filament is first aligned with a
homogeneous static field Bx. In addition, a transverse sinusoidal field ByZ
Ba sinðut�Þ with an adjustable frequency fZu/2p is applied in the direction
perpendicular to Bx. These two fields have comparable amplitude so that the
resulting field BhBxexCByey oscillates around the x -axis (see figure 1a for a
definition of the coordinate system). Since the particles are superparamagnetic,
the induced dipole moments are always directed parallel to the instantaneous
magnetic field, formed as the superposition of the applied field and the fields due
to the dipole moments induced along the filament. Since the energy of any pair of
dipoles is minimum when aligned, the particles in the filament experience
torques that tend to align the filament with the instantaneous applied field, so
Proc. R. Soc. A (2008)
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Figure 2. Three types of freely swimming micro-filaments. (a) Untethered filament showing a
defect. The site of the defect, which is most likely caused by a low concentration of bound polymer,
is marked with an arrow. (b) Hairpin swimmer. (c) Tethered swimmer. The micro-filament is
attached to a red blood cell. Panel (a) has been adapted from Roper et al. (2006).
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the free ends of an isolated filament will tend to follow the field direction. Viscous
loading prevents the filament from rotating rigidly to follow the applied field,
and so it bends with the phase of the filament away from the free ends lagging
the phase of the free end. These are the necessary ingredients for the
propagation of a bending wave away from the free end towards the centre of
the filament (figure 1).

As the bending wave propagates along the filament, fluid is dragged in the
direction of phase propagation. Since no external forces act upon the filament,
there should be compensatory motion of the filament in the opposite direction
(Taylor 1951). However, for an isolated defect-free swimmer, for which the
deformation modes are symmetric about the centre line (figure 1a), the propulsive
viscous forces exerted by the two ‘arms’ cancel exactly.

Some modification is therefore needed to break the symmetry of the forces
generated. Three methods for breaking this symmetry—effectively eliminating
either the leftward- or rightward-propagating components of the bending wave—
are shown in figure 2.
Proc. R. Soc. A (2008)



881Movement of magnetic micro-swimmers
The two arms of an isolated filament may differ in respect of the following.

(i) Material properties. Variations of bending stiffness arise from variation in
the number and quality of DNA bridges between adjacent particles. In
one such extreme case, the defects of very small bending stiffness may be
seen, allowing large curvatures to be developed at specific points along the
filament. Filaments constructed by this method always swim with the
shorter arm forward (Roper et al. 2006), as shown in figure 2a.

(ii) Geometry. Sufficiently long filaments do not always align with a static
applied field, but may form folded structures (Goubault et al. 2003;
Cēbers 2005; Roper et al. 2006). These structures are not stable, except
when the arch deforms plastically, presumably by a reorganization of the
DNA linkages at the arch. The two arms of such a structure point in the
same direction so that the viscous forces generated by the deforming arms
sum, and the filament swims with its free ends foremost (Cēbers 2005), as
shown in figure 2b.

(iii) Kinematics. If one arm is attached to a high drag object such as a red
blood cell, it is prevented from following the applied field. The increase in
viscous loading on the tethered arm of the filament suppresses the bending
wave, and the filament swims with its free arm forward (Dreyfus et al.
2005), as shown in figure 2c.
3. A model for the dynamics of the driven filament

We review a previously derived continuum model for the conformational
changes of the filament, in which the magnetic and elastic properties of the
filament are represented on a coarse-grained level by the equations of a driven
elastica, and hydrodynamic drag treated with resistive force theory (Cēbers
2003; Roper et al. 2006). The interactions between the dipole moments induced
in the beads and the external field appear as a body torque t� distributed along
the length of the filament. We have assumed that the deformation of the
filament is confined to a single plane. Such an approximation is certainly
acceptable for an untethered filament, since the magnetic torque upon the
filament acts in a direction normal to the plane of the crossed magnetic fields.
However, for cell-tethered swimmers, the cells are seen to roll from side to
side as they track the end of the filament, which tends to pull the filament out of
the plane of the crossed fields. The rolling is particularly pronounced when the
filament is not large when compared with the cell, and probably accounts for
the discrepancy between the theoretical and experimental swimming speeds for
short filaments (Dreyfus et al. 2005).

Denote the tangential (tensile) and normal stress resultants along a filament
by L� and N � respectively, the torque resultant by M � and the tangential and
normal components of the velocity of the elastica by v�s and v�n. A balance of
internal to external stresses along the filament allows us to relate the stress
resultants to the filament velocity

v

vs�
ðL�sCN �nÞZ zsv

�
s sCztv�nn; ð3:1Þ
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where zs and zt are, respectively, the parallel and perpendicular resistive force
coefficients (Lighthill 1976; Yu et al. 2006) and the parameter KL!s�!L
measures distance along the centre line of the elastica. A balance of moments
upon an infinitesimal element of filament gives

vM �

vs
Ct� ZKN �: ð3:2Þ

The conformation of the filament is described by a single angle variable q(s, t)
defined as the angle between the tangent to the elastica s and the x -axis (the
static field direction) as shown in figure 1. The polymer bridges between particles
resist any relative rotation of the particle, and on the scale of our model we may
characterize this elastic response using a bending stiffness Kb relating the
torque resultant within the filament to the strain: M �ZKbvq=vs

� (Goubault
et al. 2003). Cast in a dimensionless form1 the inextensibility constraint and force
and torque balances give us equations for the filament tension and evolution of
the angle variable

a
v2L

vs2
Z

vq

vs

� �2
LC ðaC1Þ vq

vs

v

vs
Ca

v2q

vs2

� �
N ; ð3:3aÞ

U
vq

vt
Z

v2q

vs2
LCðaC1Þ vq

vs

vL

vs
K a

vq

vs

� �2
K

v2

vs2

� �
N ; ð3:3bÞ

N ZK
v2q

vs2
KMnSðq; t; b0Þ; ð3:3cÞ

Sðq; t; b0Þhb0 sin t cos 2qK
1

2
1Kb20 sin

2t
� �

sin 2q: ð3:3dÞ

We review the four dimensionless parameters that feature in these governing
equations.

(i) The drag anisotropy factor ahzt=zs is equal to the ratio of normal to
tangential drag coefficients.

(ii) The oscillatory field strength b0hBa/Bx.
(iii) The magnetoelastic number

Mn h
pðaBxLÞ2

6m0Kb

c2

ð1Kc=6Þð1Cc=12Þ ð3:4Þ

(in which we have assumed that the particles have some isotropic
susceptibility, c (Dreyfus et al. 2005), and write a for the particle radius
and m0 for the free space permeability) encodes the relative strength of
magnetic to elastic stresses. When static magnetic fields are applied to the
filament, any curvature developed by the filament tends to condense into
features with OðMK1=2

n ÞL length scale, such as the arches of long-lived
hairpin conformations that filaments may adopt if initially orthogonal to
the applied field (Goubault et al. 2003; Roper et al. 2006).
1Denoting the bending stiffness of the filament by Kb and its length by 2L, we define dimensionless
variables: N �ZKbN=L2; L�ZKbL=L

2; s�ZLs; and t�Zt/u.

Proc. R. Soc. A (2008)
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(iv) The dimensionless frequency

Uh
ztuL4

Kb

; ð3:5Þ

gives a measure of the relative importance of viscous and elastic forces. If
one end of a long filament were clamped to a wall, and the free end
waggled by a localized force, then a length L/U1/4 of filament would be
mobilized by the forcing (Wiggins et al. 1998).

In equations (3.3a)–(3.3d ), the function S contains all of the angle and time
variation of the magnetically induced torque: tZMnS.

In our experiments, the magnetic micro-swimmers are slightly denser than the
surrounding fluid and, at the time that measurements of swimming speed are
made, have sedimented to the floor of the capillary tube. The drag upon the
filament is enhanced by its close proximity to the floor. Denoting the separation
of the filament from the floor of the tube by h, we estimate the size of the drag
enhancement using the formula (Happel & Brenner 1973)

zZ
zN

1K 3zNL
32phh

; ð3:6Þ

where z may stand for either the resistive force coefficients zt or zs, and zN

denotes their far-field values, which we may, without too severe error, take
equal to the values determined theoretically for a rigid spheroid (Cox 1970;
Meunier 1994)

zNt Z
4ph

logðL=aÞC1=2
; zNs Z

2ph

logðL=aÞK1=2
: ð3:7Þ

In order to model the three classes of micro-swimmer described above, it is
necessary to devise continuum representations for the two different filament end
conditions that may be realized in experiment. The first condition corresponds to
the end of the filament being left free, for which appropriate boundary conditions are

N Z 0; LZ 0 and
vq

vs
Z 0: ð3:8Þ

Save for our discussion of swimming direction in §6c, which may be illuminated
by studying the dynamics of an untethered filament, we will henceforth limit our
analysis to swimmers of the third class, in which one end (which we identify as the
boundary sZ1) is left free and the other (sZK1) is tethered to a red blood cell.
The cell does not come into contact with the floor of the tube, but appears (from
indirect inference of the drag that it experiences) to sit on a thin (approx. 100 nm)
cushion of fluid that we presume to be maintained by some combination of
electrostatic, steric or elastohydrodynamic forces (Dreyfus et al. 2005). Although
the swimming filament may be imaged only from above, out-of-plane rotation of
the cell allows us to measure the cell thickness in some cases and, in line with these
measurements, we treat the cell throughout as pill shaped with radius equal to its
height. We set the separation of the filament from the wall to be equal to the
radius of the cell (i.e. hZa�c ) in (3.6). For a typical micro-swimmer, the cell radius
is a�cZ3:5 mm and the half-length of the filament is LZ15 mm. We write acZa�c=L
for the dimensionless cell radius. Figure 1b shows the three length scales that must
be introduced in order to describe the geometry of a cell-tethered swimmer.
Proc. R. Soc. A (2008)
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We extend our resistive force model to include the drag upon the ‘cargo’, by
introducing an additional pair of drag coefficients: D�

t for translation and D�
r for

rotation in the plane of the applied magnetic fields, so that the (dimensional)
force required to propel the cell without rotation at speed U � is given
by F �ZD�

tU
�, and the torque required to rotate the cell at some angular

velocity u�
c by T�ZD�

ru
�
c. These drag coefficients have dimensionless

counterparts DtZD�
t=ztL and DrZD�

r=ztL3. Although we enjoy little
experimental control over the manner in which the filament is attached to the
cell, it is typically seen that the point of attachment lies on the outer perimeter of
the cell and that there is no relative motion of filament and cell (i.e. the filament
may be considered to be ‘clamped’ to the cell). Balances of normal and tangential
forces and torques upon the cell then yield

N ZDtUUn hDtU vnKac

vq

vt

 !
; LZDtUUs hDtUvs;

and

DrU
vq

vt
ZNacC

vq

vs
:

9>>>>>>>=
>>>>>>>;

ð3:9Þ

We estimate the drag coefficients for the cargo by assuming that the drag upon
the red blood cell is dominated by the fluid resistance within the lubrication layer
(giving D�

tZhpa�2c =d� and D�
rZ2hpa4c=3d

� for a gap of thickness d�). For a
typical cell-tethered micro-swimmer in water, the dimensionless drag coefficients
and filament geometrical parameters take values

aZ 1:83; ac Z 0:23; Dt Z 4:68 and Dr Z 0:13: ð3:10Þ
The accuracy of this system of equations as a model for the dynamics of a
magnetic micro-swimmer was shown in previous work (Dreyfus et al. 2005).
Fidelity was the weakest for short filaments, for which the neglect of
hydrodynamic interactions between the filament and its cargo is inadmissible
and rotation of the cell/filament system about a horizontal axis becomes
significant.
(a ) Inferring swimming speed from stroke kinematics

The computed conformations q(s, t) of the micro-swimmer can be simply
related to its swimming speed by finding the resistance tensor of a rigid filament
in each of the conformations q(s, t). Our treatment parallels previous studies of
non-filamentary deformable swimmers (Stone & Samuel 1996; Yariv 2006).
Specifically, suppose that at some instant both the conformation of the swimmer
q(s, t) and the stress resultants L, N, and moment resultant M are all known.
Now consider a reference swimmer, with identical conformation but different set
of stress and moment resultants L̂, N̂ and M̂, and velocities v̂s, v̂n and vq̂=vt.
Then, by appealing to the force balance relation (3.1) we obtain

½vnN̂ CvsL̂Kv̂nNKv̂sL�1sZK1 Z

ð1
K1

ðN̂nCL̂sÞ$ dv
ds

KðNnCLsÞ$ dv̂
ds

� �
ds:

ð3:11Þ
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Use of inextensibility and of the Serret and Frenet formulae gives dv=dsZ
ðvq=vtÞn for a forced filament, so the r.h.s. of (3.11) may be simplified
to
Ð 1
K1ðN̂ðvq=vtÞKNðvq̂=vtÞÞds.

Next, take for a reference state a rigid filament/cell system with the same
instantaneous conformation as our filament. Suppose that this reference filament
is propelled by a force F̂ applied at the centre of the red blood cell and directed
along the x -axis, and that a point torque T̂ is applied at the centre of the cell in
order to prevent the filament from rotating. Then, the reference filament will
translate without rotation (with velocity v̂Z Û ) so that (3.11) simplifies to

F̂U$x̂ Z acN̂
vq

vt sZK1 C

ð1
K1

N̂
vq

vt
ds:

���� ð3:12Þ

In order to compute the swimming speed U$x̂ of the filament, the stress
resultant N̂ must be known for the reference state of a forced rigid filament. One
route to determining this function is to integrate directly the force balance
equations (3.1). If we represent the orthogonal components of the stress
resultants and centre line velocity as the real and imaginary parts of complex
fields, L̂C iN̂ and ÛZÛxC iÛy, respectively, then the force balance equations
can be assembled into a simple form

v

vs
½eiqðL̂C iN̂Þ�Z U

2a
½ðaC1ÞÛKðaK1Þ �̂U e2iq�; ð3:13Þ

where an overbar has been used to denote the complex conjugate of the rigid
filament velocity. This equation may be integrated, and on application of the
boundary conditions at the red blood cell it becomes

F̂ ZUDtÛC
U

2a
2ðaC1ÞÛKðaK1Þ �̂U

ð1
K1

e2iqðs;tÞds

� �
: ð3:14Þ

This linear equation may be inverted to obtain the rigid-body velocity Û of the
filament in response to the (arbitrary) applied force F̂ . Integration of (3.13) then
gives us the stress resultant everywhere along the rigidified filament ðN̂ðs; tÞÞ,
which may be substituted into (3.12) to obtain the swimming speed.

By using a co-moving system of coordinates to resolve body deformation in
response to the applied torques and then (3.12) to back out the velocity of the
body afterwards, we separate the tasks of solving for the shape of the filament
q(s, t) and the speed of translation of the swimmer. Moreover, application of the
formula (3.12) will allow us to solve only for the leading-order shape of the
filament in several physically distinguished limits. These limits correspond to
forcing scenarios for which further simplification of (3.12) is possible: in which
the motion of the filament can be decomposed into a small deformation on top of
a (possibly large) rigid-body motion, so that qðs; tÞhj0ðtÞCeq1ðs; tÞ, where
e/1. In this case, we may approximate e2iqze2ij0ð1C2ieq1Þ. The two cases
j0h0 and jj0j[OðeÞ must be treated separately.
(b ) No rigid-body motion: j0h0

By inverting (3.14) we find ÛxZ Û 0xCOðe2Þ and ÛyZeÛ 0yCOðe2Þ where

Û 0x Z
F̂

UðDtC2=aÞ and Û1y Z
ðaK1ÞLð1Þ

1 ðK1; tÞF̂
UaðDtC2ÞðDtC2=aÞ : ð3:15Þ
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Here we have defined a series of functions L
ð1Þ
1 ðs; tÞZ

Ð 1
s q1ðs 0; tÞds 0, L

ðnC1Þ
1 ðs; tÞZÐ 1

s L
ðnÞ
1 ðs 0; tÞds 0. Hence, from (3.13)

N̂ðs; tÞZ eF̂

DtaC2
ðaK1ÞLð1Þ

1 ðs; tÞCð1KsÞq1ðs; tÞK
ðaK1Þð1KsÞ

Dt C2
L
ð1Þ
1 ðK1; tÞ

� �
;

ð3:16Þ

plus O(e2) terms. Substituting for N̂ in (3.11), we then arrive at an equation for
the time-averaged swimming speed of the filament

hU$x̂iZ e2ðaK1Þ
DtaC2

L
ð1Þ
1 ðK1; tÞ
DtC2

v

vt
L
ð2Þ
1 ðK1; tÞCDtacq1ðK1; tÞ

� 	*

C

ð1
K1

L
ð1Þ
1 ðs 0; tÞ vq1ðs

0; tÞ
vt

ds 0


COðe4Þ; ð3:17Þ

where we use single angled brackets as a shorthand for taking the time average.
The time-averaged swimming speed is quadratic in the amplitude of the filament
deformation, e.
(c ) Large rigid-body motion: jj0j[e

In the case where the rigid-body component of the motion is large, by inverting
(3.14) we determine the velocity of the rigid filament up to terms of O(e2)

Ûx Z
F̂

D
DtC

ðaC1Þ
a

C
ðaK1Þ

a
cos 2j0K

eðaK1Þ
a

L
ð1Þ
1 ðK1; tÞsin 2j0

� �
; ð3:18aÞ

Ûy Z
F̂ ðaK1Þ

aD
sin 2j0CeL

ð1Þ
1 ðK1; tÞcos 2j0

h i
; ð3:18bÞ

in which DhðDtC2ÞðDtC2=aÞ. Thus from (3.13)

N̂ðs; tÞZ F̂

DtC2
ð1KsÞsin j0C

eF̂

DtaC2
ðaK1ÞLð1Þ

1 ðs; tÞCð1KsÞq1ðs; tÞ
h

K
ðaK1Þð1KsÞ

Dt C2
L
ð1Þ
1 ðK1; tÞ

�
cos j0: ð3:19Þ

By substituting in (3.12) we obtain the time-averaged swimming speed of
the filament

hU$x̂iZeðaK1Þ
aD

2ðDtC1Þ L
ð2Þ
1 ðK1; tÞKL

ð1Þ
1 ðK1; tÞ

� 	hD
CacDt L

ð1Þ
1 ðK1; tÞK q1ðK1; tÞ

� 	i
cos j0

dj0

dt



COðe2Þ: ð3:20Þ

The time-averaged swimming speed is linear in the amplitude of the non-rigid-body
component of the filament motion.
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Figure 3. Evolution of the dimensionless swimming speed as a function of the ratio of field
strengths, b0, and magnetoelastic number, Mn (3.4). (a) Experimentally observed swimming speed,
compiled from three swimmers: inverted triangles, LZ10.0 mm; squares, LZ11.8 mm; circles,
LZ13.1 mm. All three swimmers are actuated at fZ50 Hz. The dimensionless swimming speed is
given by the shading of data points, according to the colour key on the right side of the figure.
(b) Predicted swimming speed (simulation) for an enlarged range of magnetoelastic numbers, for
a single swimmer (LZ11.8 mm, UZ87.7). The shaded trapezium on the lower left of the plot
marks the parameter range assayed experimentally in (a).
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4. Speed of swimming

For a single cell-tethered swimmer, we measure experimentally the swimming
speed while cycling through the amplitudes of the two components of the applied
magnetic field. This approach permits us to vary the two dimensionless
parameters b0 and Mn, while conserving the dimensionless frequency of actuation
U. The variation of swimming speed with these two parameters is shown in
figure 3a. It is impossible to continue the measurements above a field ratio
b0z1.4; above this critical field ratio, the direction of swimming ceases to align
with the steady component of the field, a phenomenon that has already been
observed in numerical simulations (Gauger & Stark 2006). We will explain
the mechanism underpinning the reorientation of the swimmer in §6c. Up to this
cut-off, the absolute swimming speed is seen to increase monotonically as either
Mn or b0 is increased. We contend that this monotonicity would not persist if the
experimental assay had been continued up to much larger magnetic fields.

In figure 3b, we show the swimming velocity determined by numerical simulation
of the equations (3.3a)–(3.3d ) and covering an augmented range in Mn, i.e. longer
filaments and stronger magnetic fields. In our simulations, we discretize the
equations by replacing s-derivatives by centred differences, and simultaneously solve
the nonlinear equations for the tensions and the fictive angles (used to enforce the
boundary conditions) and advance thefilament shape using theMatlab implicitDAE
solver ode15 s. The non-monotonic dependence of swimming speeduponMn over this
enlarged range (which would have been seen in experiment if, for example, both field
strengths and filament lengths had been doubled) is analogous to the non-monotonic
variation with actuation frequency of the force exerted by a locally actuated elastic
filament (Wiggins et al. 1998), an observation that will be explored in §5.
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Although the coupled nonlinear partial differential equations for the evolution
of the angle variable and tension within the filament must in general be solved
numerically, quantitatively accurate expressions for how varying the material
parameters (i)–(iv) affects the maximum swimming speed may be arrived at by
analytical study of several distinguished limits. We focus upon developing
asymptotic formulae for the swimming speed in the case where the
magnetoelastic number, Mn, is either very large or very small.
(a ) Asymptotic results: small Mn (short stiff filaments)

If Mn/1, then non-monotonic variation of swimming speed with frequency is
seen only if the motion is driven by a slowly time-varying magnetic field:UZMnU1.
In this case, relaxation of field-induced curvature is only very weakly damped,
and the motion of the filament reduces to a rigid-body rotation upon which an
O(Mn) deformation may be superimposed: qwj0ðtÞCMnq1ðs; tÞCOðM 2

n Þ. We can
determine both the form of the rigid-body rotation and the small deformation
components of the motion by balancing viscous and elastic stress terms in (3.3b)
to arrive at an equation

U1

dj0

dt
ZK

v2N1

vs2
; with N1 ZK

v2q1

vs2
C

1

2
1Cb20 sin

2t
� �

sinð2ðfKj0ÞÞ; ð4:1Þ

upon which we impose boundary conditions

N1 Z 0 and
vq1

vs
Z 0 at sZ 1 ð4:2Þ

and

acDtU1

dj0

dt
ZDt

vN1

vs
KN1 and DrU1

dj0

dt
Z acN1C

vq1

vs
at sZK1: ð4:3Þ

Recall here that f is the time-varying angle of the applied field tan fZBy=Bx .
On integrating up (4.1) and applying these boundary conditions, we obtain the
deformation up to a O(Mn) rigid-body motion, which we denote by j1(t)

q1ðs; tÞZU1

dj0

dt
K

ð1KsÞ4

24
C

ðð2CacÞDtC2Þð1KsÞ3

6ðDtC2Þ

�

K
4CDtð8C12ac C6a2c C3DrÞC6Dr

� �
ð1KsÞ2

12ðDt C2Þ

!
Cj1: ð4:4Þ

In order to balance torques on the red blood cell (and thereby satisfy the second of
the boundary conditions (4.3)), it is necessary that

U1

dj0

dt
Z

6ðDt C2Þ 1Cb20 sin
2t

� �
sinð2ðfKj0ÞÞ

4CDtð8C12ac C6a2c C3DrÞC6Dr

: ð4:5Þ

If we wish to solve for the O(Mn) rigid-body component of the filament motion,
j1(t), it would be necessary to extend our expansion for the filament shape up
to terms of OðM 2

nÞ. However, this is not necessary for a computation of the
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swimming speed, since the rigid-body part of the motion is reversible and will
not contribute to the translation of the swimmer over a complete cycle of a
magnetic field, as can be confirmed by substituting in the expression for the
swimming speed (3.20). The expression for the swimming speed obtained by
substituting for q1 and dj0=dt in (3.20) is cumbersome and we do not reproduce it
here. We compare the asymptotic expression for the swimming speed with a
numerical integration of the full time evolution and inextensibility equations
(3.3a)–(3.3d ) in figure 4. The parameters Dr, Dt, a and ac cannot be continuously
controlled in experiment, and we fix them at typical values given in (3.10).

The swimming dynamics change as the frequency of actuation is increased.
If the actuation frequency U is increased to some O(1) value, the oscillation of
the filament is very severely damped and the rigid-body component disappears.
Instead the filament oscillates with some O(Mn) amplitude around a mean
orientation, which may be either aligned to or else orthogonal to the
steady component of the applied field. We write qwðp=2KÞMnq1ðs; tÞCOðM 2

nÞ
to represent both of the possible gaits, and solve for the conformation of
the filament in appendix Aa. We will discuss how the mean orientation is selected
in §6c.
(b ) Asymptotic results: large Mn and small b0 (long filaments strongly actuated )

In the limit Mn[1, non-monotonicity of the swimming speed is seen only at
high actuation frequencies UwO(Mn). To resolve this non-monotonicity
analytically, we rescale UZMnU1. In order for the governing equations to be
tractable, we make an additional simplification that b0/1 and seek to compute
the swimming speed up to terms of Oðb20Þ. In principle, the computation can
be continued to incorporate higher order terms in b0, although in practice
leading-order expressions are known to suffice for many classes of swimmer
Proc. R. Soc. A (2008)
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(Yu et al. (2006) and see figure 5). If we write qZb0q1COðb20Þ, then linearization
of (3.3a)–(3.3d ) produces

MnU1

vq1

vt
ZK

v4q1

vs4
CMn

v2q1

vs2
: ð4:6Þ

The normal stress balance features a hyperdiffusive term representing elastic
(bending) stress, while a second diffusive term represents the tension-like effect of
the magnetic dipole–dipole interactions, which acts to straighten the filament. The
tendency of these torques to align the entire filament with the direction of the
external field is felt only through the boundary conditions upon the filament.Unlike
elastohydrodynamic models of driven flagellae (Wiggins et al. 1998; Lagomarsino
et al. 2003), the dominant balance of stresses upon the filament does not feature
bending torques, except near the ends of the filament, but rather is between these
magnetic torques, and the viscous resistance todeformation of the filament. In order
to highlight contrasts with these elastohydrodynamic models, we define a
parameter analogous to the dimensionless wavenumber that appears in these

problems, Sp1ZU
1=4
1 (Lagomarsino et al. 2003). It suffices to consider solutions of

the form q1ðs; tÞZ ~qðsÞeit, with the imaginary part understood to have been taken.
The spatial variation of the filament deformation is then given by

~q1ðsÞZ c0e
S 2
p1s Cd0e

KS 2
p1s CO

1

M
1=2
n

 !
: ð4:7Þ

On assembling prefactors, we find that, instead of the bending wave being
propagated by elastic stresses a distance [ pwUK1=4L along the filament, magnetic
torques carry the wave a potentially much greater distance

[mw
pa2B2

xc
2

6m0ztuð1Kc=6Þð1Cc=12Þ

� �1=2

: ð4:8Þ
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We call [m the magnetoviscous length. Elastic stresses are felt only in a highly
curved section of filament near the point of attachment to the cell. Within this
inner layer we may define a scaled coordinate SKZM

1=2
n ðsC1Þ, and

~Q1ðSKÞZ A0CMK1=2
n A1=2

� 	
SKCB0CMK1=2

n B1=2C C0 CMK1=2
n C1=2

� 	
eKSK;

ð4:9Þ
where we follow Hinch (1991) by using capitalization to distinguish between inner
and outer layer variables.

At this order, the boundary conditions at the point of cell attachment (3.9)
may be written as

Dt K
v3 ~Q

vS 3
K

C
v ~Q

vSK

� �
ZMK1=2

n iDtU1ac ~QK
v2 ~Q

vS 2
K

C ~QK1

� �
; ð4:10Þ

iDrU1
~QCac

v2 ~Q

vS 2
K

C1K ~Q

� �
ZMK1=2

n

v ~Q

vSK
: ð4:11Þ

Solving these equations up to OðMK1=2
n Þ terms in the boundary layer, and O(1)

outside, and matching the two expressions allows us to determine all of the
constants featuring in the expressions (4.7) and (4.9). From inner and outer
solutions, we can construct a uniformly valid expression for the filament
deformation

~q1ðsÞZ
1

cosh 2vS 2
p1

� �
Cl�v sinh 2vS 2
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� �!�cosh ðsC1ÞvS 2
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sinh2 vS 2
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eKM

1=2
n ðsC1Þ

�
;

ð4:12Þ
in which lhð1=S 2

p1Þðða2c=DrÞCð1=DtÞÞ and yh 1ffiffi
2

p ð1C iÞ. We can then read off
the time-averaged swimming speed of the micro-swimmer from (3.12)

hU$xiZ b20ðaK1Þ
4U1ðDtaC2ÞKðSp1;lÞ
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S 2
p1
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ffiffiffi
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ffiffiffi
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S 2
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� 	
Csinh

ffiffiffi
2

p
S 2
p1

� 	� 	
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ð4:13Þ
where KðSp1; lÞh jcoshð2vS 2

p1ÞCl�v sinhð2vS 2
p1Þj2.

For typical values of the cell geometry (3.10), the swimming speed is plotted
as a function of the dimensionless frequency U1ZS 4

p1 in figure 5. As the figure
makes clear, the asymptotic expression reproduces the dependence of swimming
speed upon the dimensionless frequency U quite well even at moderate b0 (in the
figure the comparison is made for b0Z1) for which the a priori case for linearizing
the governing equations (3.3a)–(3.3d ) is weak.
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5. Do magnetic micro-swimmers move like eukaryotic cells?

The magnetic micro-swimmer swims with its filament outstretched before it and
propagates a bending wave from the tip to its base, in contrast to many model
eukaryotic swimmers, such as sperm cells, which propel themselves with
posterior flagella and propagate a bending wave from flagellum base to tip
(Brennen & Winet 1977). Tip to basal actuation of anterior flagella is, however,
seen in some species of protozoa, among the family Trypanosomatidae (Jahn &
Votta 1972) and in the genus Peranema (Chen 1950; Chang 1966). Putting such
kinematical distinctions aside, in this section we explore a dynamical congruence
of the magnetic micro-swimmer to a swimming eukaryotic cell.

The variation of swimming speed with frequency for a typical swimmer is
plotted in figure 6 in both dimensionless and dimensional forms. The
experimental data are compared with numerical solution of the full equations
of motion (3.3a)–(3.3d ) and the asymptotic solution in the limit of large
magnetoelastic number (4.13). In addition to the elastic and magnetic properties
of the filament, data for the filament length and cell size must be measured from
images of the driven filament. A single parameter—the thickness of the
lubricating layer supporting the red blood cell, d �, which feeds into the cell-
resistive force coefficients Dt and Dr—cannot be directly measured, and must be
determined by fitting the model to the swimming speed data. Fitting the model
to the previously published experimental data (Dreyfus et al. 2005), we obtain an
estimate d�Z120 nm, which is consistent with maintenance of the lubrication
layer by either the electrostatic forces or the glycocalyx of the red blood cell.
Although the magnetoelastic number MnZ3.42 of this experimental realization
of the magnetic micro-swimmer is not very large, the swimming speed is captured
quite well, especially at high frequencies, by the high-Mn asymptotic expression
derived in §4b; nevertheless the asymptotic result under-predicts the maximum
swimming speed and over-predicts the field frequency at which this maximum
swimming speed is attained.

With this affirmation of our basic physical picture, we proceed to compare
the swimming gait arrived at in the limit Mn/1 with a waggled elastic rod,
and with the flexible flagellum of a eukaryotic cell. The shape of most of the
micro-filament is controlled by a balance of viscous stresses and internal
torques U1ðvq1=vtÞZMnðv2q1=vsÞ2, so that the entire length of the filament is
‘active’, unlike the waggled rod, in which the propagation of the bending wave
is propagated only by elastic stresses and resisted by viscous stresses. The
dominant effect of the torque is to apply an effective uniform line tension along
the filament, acting to eliminate the difference in orientation of nearby
elements. We expect the dominant thrust for propulsion to come from the most
highly curved regions of filament near the free and tethered ends. In the limit
of large frequencies (U[Mn), the length scale of these regions, set by the

balance of magnetic and viscous torques, is [mwU
K1=2
1 L. Now, our expression

(3.17) relating the swimming speed to conformation gives a dimensional
swimming speed

hU �$x̂iwuðaK1Þ
DtaC2

hhqLð1Þ�ii; ð5:1Þ
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where Lð1Þw
Ð L
KL q ds

� and we use double angled brackets to denote taking
both the time and the filament-length average of a quantity; hh$iih
u=ð2pLÞ

Ð L
KL

Ð 2p=u
0 $dt� ds�. Since the maximum angle excursion of the filament

(at the free end) is approximately b0, hhqL1iiwb20[
2
m=L, so that

hU �$x̂iw KbMn

L2

� �
b20ðaK1Þ

ztðDtaC2ÞL ; ð5:2Þ

where the group KbMn/L
2 is independent of both the filament length and the

bending stiffness. A more careful analysis (see appendix Ab) gives us the
prefactor 1/4. For a typical magnetic micro-swimmer of length 2LZ30 mm,
field strength 10 mT and frequency fZ20 Hz, the typical torque per unit length
applied by the magnetic field is tz10 pN. If the micro-swimmer drags a cell of
diameter 6 mm that is supported by a 120 nm thick cushion of fluid, then (5.2)
gives a swimming speed estimate hU �$x̂iw4 mmsK1, which accords well with
the typical swimming speeds obtained in experiment (figure 6b).

We compare the swimming speed induced by homogeneous magnetic
actuation with the speeds of primitive swimmers sharing this ‘bauplan’ and
limited to the same magnitude of internal torque: a eukaryotic flagellum driven
by phased motors exerting torques of amplitude wt, and an elastic rod, where
the same total torque wtL is localized at the end of the filament. The gaits of the
three swimmers under the action of these torques are sketched in figure 7.

Various models at all scales of complexity have been proposed for the beating
of a flagellum that is driven by metachronously activated dynein motors rather
than an applied external field (Machin 1963; Brokaw 1972a; Camalet & Jülicher
2000). Consider a cell, with isotropic drag coefficient Dt, propelled by such a
flagellum. We follow a minimal treatment of the internal dynamics of the
flagellum, assuming that its beating is maintained by some pattern of distributed
oscillatory internal torques (Taylor 1952; Machin 1963) with characteristic
wavenumber k and uniform amplitude along the flagellum length. Resistance to
these torques is supplied by the external viscous drag: recent experiments on
Proc. R. Soc. A (2008)
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Figure 7. Gaits of three model swimmers subjected to internal torques of the same magnitude wt.
(a) Eukaryotic cell, with distributed torques and with bending wavelength 2p/k and amplitude
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decay length [ pwðKb=ztuÞ1=4 and amplitude wtL=ðKbztuÞ1=2. (c) Magnetic micro-swimmer,
with bending wave decay length [mwðt=b0ztuÞ1=4 and amplitudewb0[m.
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pinned and freely swimming bull spermatozoa give an estimate of Uz3000
(Riedel-Kruse et al. 2007), showing that the bending stiffness of the flagellum is
subdominant. Hence, if we write t0 for the amplitude of the internal torque per
unit length, then the same balance of viscous and applied torques as control the
dynamics of the micro-swimmer will give qwk2t0=ztu and Lð1Þ�wkt0=ztu so
that the speed of the swimmer can be estimated (again using (3.17)) as

hU �$x̂iw t20k
3ðaK1Þ

z2tuðDtaC2Þ
: ð5:3Þ

The corresponding scaling of swimming speed with flagellum length depends on
whether or not the wavenumber of the bending wave is conserved as the length of
the flagellum is increased. Insufficient data exist to distinguish between these two
cases. Brennen & Winet (1977) collate data from various flagellated eukaryotic
cells, including algae, protozoa and spermatozoa, but unrecorded differences in
the flagellum thickness, internal structure and external decoration between these
taxa cast doubt upon whether the covariation of bending wavelength with
flagellum length can be analysed informatively. Conversely, recent studies of
variation in sperm morphological characters between individuals (Birkhead et al.
2005) or closely related species (Immler & Birkhead 2007), which could allow
Proc. R. Soc. A (2008)
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these hidden variables to be controlled for, have not included wavelength data.
For this reason, we briefly discuss both possibilities. If k is conserved, so that the
filament length is increased by adding additional wavelengths to the filament,
then except for the effect of proportionate decrease in head to flagellum drag,
which can be neglected if Dt/1, flagellum length is a poor predictor of
swimming speed (Birkhead et al. 2005). If the number of wavelengths is
conserved, so that kf1/L, then according to (5.3) swimming speed will decrease
with the third power of flagellum length, as a result of the lower effectiveness of
long-wavelength strokes for locomotion (Taylor 1951).

We can repeat the calculation to determine the swimming speed of the
comparable elastic swimmer that would be constructed if the paramagnetic
filament were replaced by an elastic filament that is waggled from side to side by
an external torque of typical magnitude ~t0 applied at the free end. For such a
swimmer, a bending wave will propagate from the free end, with, at high
frequencies, a typical damping length [ pwðKb=ztuÞ1=4 (Wiggins et al. 1998).
At the waggled end, the rod is bent into an angle qw~t0[ p=Kb, so that

Lð1Þ�w ~t0[
2
p=Kb and hhqLð1Þ�iiwt20[

4
p=K

2
bL and

hU �$x̂iw ~t20ðaK1Þ
KbztðDtaC2ÞL : ð5:4Þ

The prefactors in this expression have been determined by Lauga (2006).
For a eukaryotic cell of the same dimensions as our typical magnetic micro-

swimmer, with kZ2p/L (one complete bending wave) and internal torque
capped at the value t0w10 pN, (5.3) gives an approximate speed
hU �$x̂iz300 mmsK1, whereas if this same total torque applied to the bending
region were all applied at the end of the filament, ~t0wt0[ p, then the swimming
speed would be hU �$x̂iz10 mmsK1, according to (5.4).

Contrasts with these two primitive cases of flexible swimmer illuminate the
swimming dynamics of the magnetic micro-swimmer. Like a eukaryotic flagellum,
the shape of the magnetic filament is set by applied torques rather than filament
elasticity so that the swimming speed is independent of the elastic modulus Kb.
However, just as for the end-actuated elastic swimmer, the propulsive force is
generated only near the ends of the magnetic filament, with the bending wave
propagating to a distance that is independent of the total filament length. Since the
maximum bending angle is in both cases independent of L, the swimming speed
decreases like 1/L in proportion to the drag acting on the non-propulsive part of the
filament. The common independence of swimming speed from actuation frequency
of the magnetic micro-swimmer and the waggled elastic rod masks quite stark
differences in their swimming gaits. For a magnetic micro-swimmer the maximum
angle attained by the filament is independent of driving frequency, and so the
distance travelled per stroke declines only with the length over which the bending
wave propagates. For a waggled elastic rod the attenuation distance of the bending
wave decreases much more slowly with frequency, but is augmented by a decrease
in the maximum bending angle. In both cases the decrease in distance travelled per
stroke is compensated for exactly by the increased number of stroke cycles.

As we show in appendix A, the scalings of the gait and the swimming speed for
the magnetic micro-swimmer exactly reproduce the corresponding waggled rod
results once the length scale over which the bending wave propagates [m decreases
below the elastoviscous length [ p, whereupon viscous stresses completely prohibit
Proc. R. Soc. A (2008)
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rotation of the middle segment of the filament, and a balance of elastic and viscous
stresses determines the distance along the filament that the bending wave
propagates. Upon entering this regime, the swimming speed starts to decline

as uK1/2, which is to be expected as a special case of (5.4) in which the torque,
~t0, applied at the end of the elastic rod is not allowed to exceed the total magnetic
torque, t[ p, acting upon the bending zone of the filament.
6. Designing a fastest swimming micro-swimmer

We draw upon the numerical and asymptotic results of §§4 and 5 in order to
determine design principles for building the fastest possible micro-swimmer. Use
of such carefully calibrated models allows us to accelerate future experimental
optimization of the swimmer. We enjoy control over almost every feature of the
micro-swimmer: from the density of the polymer phase present during the
assembly of the filament, which controls the stiffness of the tail (Goubault et al.
2003), to the size of the cargo. However, the three features of the micro-filament
most easily varied in experiment are the filament length, actuation frequency and
strength of the applied fields.

We place no constraints upon the efficiency of locomotion, since the energy fed
to the swimmer by the applied field is not limited (in contrast, for instance, to
spermatozoa, which are believed to operate at the limit of their metabolic output;
Cardullo & Baltz 1991). We also focus on the maximization of the dimensional
swimming speed, hU �$x̂i, rather than upon the distance travelled by the
swimmer in each stroke.
(a ) Optimizing in filament length

We have shown that in the high magnetoelastic number and high-frequency
regime, in which most of our experiments are conducted, bending waves initiated
at the free and tethered ends of the magnetic filament propagate up to a distance
[m, defined in (4.8), inward along the filament. Thismagnetoviscous length plays a
role analogous to the elastoviscous length for the optimization of end-actuated
elastic swimmers (Wiggins et al. 1998). If the filament length L[[m, then only a
fraction of the swimmer will generate useful propulsive force, with the remainder
merely contributing to the drag experienced by the swimmer, whereas if L/[m
then magnetic torques (rather than, as in the case of the waggled elastic rod, the
stiffness of the filament) will eliminate all bending in themagnetic filament, leading
to a rigid reciprocal stroke and, by Purcell’s scallop theorem (Purcell 1977), no net
translation of the swimmer from each stroke. We therefore expect the fastest
swimming to occur for Lw[m. A more careful calculation using the asymptotic
swimming speed (4.13) and taking typical values for the cell geometry (3.10)
locates the optimum at LZ1:19[m. For a micro-swimmer driven at 20 Hz, with
field strengthBcZ10 mT, this optimum is realized by a length 2LZ10 mm,which is
slightly shorter than the magnetic filaments that have typically been used.

We remark here that, by freezing the geometrical coefficients representing the
tethered end boundary conditions at their values (3.10), it is implicitly assumed
that the size of the cargo scales with the length of the magnetic filament.
This assumption, which greatly simplifies the analysis, gives only very small
Proc. R. Soc. A (2008)
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errors for realistic cargo sizes. For the set of cell data used in arriving at the
coefficients (3.10), the optimum length predicted in the large Mn, small b0 limit
is shifted only slightly to LZ0:99[m: the increased drag associated with the
artificial increase in the size of the cargo being partially compensated for by the
suppression of the rightward travelling bending wave that starts from the tethered
end, and otherwise contributes thrust counter to the swimming direction.
(b ) Optimizing in driving frequency

In §5 we highlighted the insensitivity of the swimming speed to the frequency
of actuation. Although the length scale of the propulsive region decreases as
frequency increases, the decrease in distance travelled per stroke is compensated
for by the increased number of strokes. In appendix Ab we show that the
insensitivity of swimming speed to actuation frequency breaks down once
UwM 2

n , or, equivalently, when the magnetoviscous length ([m) and elastovis-
cous length ([ p) become comparable. For a typical swimmer, driven by a field of
strength BcZ10 mT, this threshold occurs at a frequency fz12 Hz.
(c ) Optimizing in field strength

The dependency of swimming speed upon the strength of the driving fields was
shown in figure 3. Variation of the strength of the applied field gives us another
method, besides tuning frequency, of altering the magnetoviscous length scale
over which bending waves are driven along the actuated filament.

The experimental data of figure 3a and simulations of figure 3b show swimming
speed to increase monotonically with the amplitude of the oscillating field
component b0, a trend that is recapitulated in our various analytical expressions
for the swimming speed. The fastest swimming micro-swimmer would therefore
be constructed by taking the amplitude of the oscillating field to be as large as
experimental constraints permit. There is a limit to how large b0 can become,
however, for if the amplitude of the oscillating field is made too large then the
swimmer undergoes a catastrophic 908 change in swimming direction (Gauger &
Stark 2006) and starts to swim in the direction of the oscillating component of
the field, rather than the steady component.

The torque upon a filament vanishes either if it is aligned with or orthogonal to
the external magnetic field. For this reason, filaments in static fields may adopt
long-lived folded conformations with sections alternately parallel to and
orthogonal to the applied field (Goubault et al. 2003; Roper et al. 2006). We
have exploited such conformations in order to measure the elastic properties of
the filament (Goubault et al. 2003). We see an analogue of the metastability of
field-orthogonal conformations if the swimming filaments are subjected to too
large transverse fields: if the frequency of the applied field is large enough that
[m; [ p (L so that only a fraction of the filament is bent by the time-varying
field, then the time-averaged torque exerted upon the filament vanishes if the
length or time-averaged orientation of the filament is aligned with or orthogonal
to the steady field component. Both orientations are dynamically permitted, as is
shown appendix Aa. In fact, we will show that, if the mean square oscillatory
component is larger than the steady component, then the orthogonal alignment
is energetically preferred.
Proc. R. Soc. A (2008)
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Figure 8. Experimentally observed mean orientation of an ensemble of untethered filaments of
different lengths, driven at frequency fZ50 Hz.
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The switch in micro-swimmer orientation from swimming along the steady field
component to swimming in the direction of the oscillatory component is most cleanly
assayed experimentally for untethered filaments. We build ineffective swimmers—
short magnetic filaments that are not tethered to a load—and apply the same
configuration of magnetic fields as actuates swimming of a cell-tethered filament. For
small amplitude transverse fields, the filament oscillates around a mean orientation
qZ0, while for large amplitudes it switches, abruptly, to oscillating around a mean
orientation qZGp=2. In figure 8, the critical field amplitude at which this switching
occurs is plottedwhen the strengths of the twodriving fields are allowed to vary for an
ensemble of filaments driven at the same frequency. There is a clear experimental
signature that the change occurs when the ratio of field strengths b0 exceeds

ffiffiffi
2

p
.

Below, we support this valuewith a calculation, valid formicro-swimmers, butwhich
can with very little amendment be applied to untethered filaments as well.

We may explain the critical value at which the swimming direction changes by
comparing the total elastic and magnetic energy of the two swimming
configurations. This may be done analytically in the case of small Mn, for
which the filament shape in the two swimming orientations is already known
(appendix Aa). When scaled by KbL, the two energy contributions are given by

Eelastic Z
1

2

ð1
K1

vq

vs

� �2
dsZ

M 2
n

2

ð1
K1

vq1

vs

� �2
dsCOðM 3

n Þ; ð6:1Þ
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Table 1. Summary of contrasts between eukaryotic swimmers, elastic rod and magnetic filament.

swimmer eukaryotic flagellum elastic rod
magnetic filament
(high Mn, UwO(Mn))

bending wave
propagation

applied (motor)/viscous
torques

elastic/viscous
torques

applied (magnetic)/
viscous torques

L -dependence insensitive sensitive sensitive
u -dependence sensitive insensitive insensitive
optimization

parameters
frequency and beat form length length

899Movement of magnetic micro-swimmers
plus OðM 3
n Þ terms, with the positive or negative sign chosen according to whether

the filament swims parallel to the steady or oscillatory field components. It
follows that the only energy cost paid for swimming in the oscillatory field
direction is simply the difference of magnetic energies

DEmagnetic ZMn 1Kb20 sin
2t

� �
CO M 3

n

� �
: ð6:2Þ

A micro-swimmer therefore swims in the direction of the oscillatory field
component if b0O

ffiffiffi
2

p
, and the same threshold value is seen experimentally in

figures 3 and 8.
7. Discussion

Magnetically driven micro-swimmers offer the possibility of understanding
experimentally the locomotory challenges encountered by eukaryotic cells. We
have shown that the dynamics of such swimmers are an admixture of the gaits of
a flagellum and of an elastic rod that is waggled from side to side. Bending waves
are initiated at both ends of the magnetic tail of the swimmer and, in the
physically important case of large magnetoelastic numbers and moderately high
frequencies, are propagated by the dual action of viscous and magnetic stresses.
This picture gradually breaks down when the very highest frequencies are
attained, in which elastic stresses assume a dominant role over magnetic stresses
in the transmission of the wave, although not in its initiation. This
characterization of the swimming dynamics has allowed us to develop design
criteria for optimizing the performance of the magnetic swimmer. The main
contrasts in gait and optimization criteria between the three classes of swimmer
considered in this article are recapitulated in table 1.

It is interesting to speculate how the swimmer or its environment might be
altered to make the swimming kinematics of the magnetic micro-swimmer more
closely resemble a eukaryotic cell, and less an end-waggled rod. Firstly, the high-
frequency regime in which elastic stresses start to play a dominant role in the
propagation of the propulsive bending waves may be postponed if the elastic
polymer bridges between particles are allowed to strain-soften. Then as the
frequency is increased, and viscous stresses localize bending of the filament near
the free end, the increased strain upon the filament (which scales likewb0a=[m,
where [m is defined in (4.8)) will cause the elastoviscous length scale to decrease.
For sufficiently strong softening (KbweK1, where e is the strain), the hierarchy of
Proc. R. Soc. A (2008)
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length scales [mO[ p may be maintained indefinitely so that propagation of the
bending wave is always driven by the applied torque. Secondly, we can correct
the localization of bending itself: for a micro-swimmer immersed in a shear-
thinning fluid (specifically with hwuK1), the magnetoviscous length can be made
independent of u, so that the magnetic micro-swimmer will use the entire length
of its body to propel itself at all frequencies.

The authors would like to thank the Harvard NSEC and the benefactors of the Kao and Kodak
fellowships for financial support.
Appendix A. Very high-frequency asymptotics

Design of a fastest swimming micro-swimmer requires tuning of material
parameters and of the actuation frequency in order to maximize the dimensional
swimming speed LuhU$x̂i. Tuning the actuation frequency to achieve that of
the fastest swimming swimmer does not therefore give conditions corresponding
to optimization of the dimensionless swimming speed which can be seen in
figures 4 and 5, but rather to the maximization of the quantity UhU$x̂i.
Optimization of this quantity leads to the selection of frequencies in a higher
frequency regime than discussed in §4a,b, and we extend our asymptotic
expressions for the swimming speed into this regime here. By so doing, we find
that at very high frequencies the dynamics of the driven magnetic tail of the
filament approaches quantitatively the gait of a waggled elastic rod.

(a ) Small Mn

In this high-frequency regime, the dominant balance in the equation of motion
(3.3a)–(3.3d ) is between viscous and bending stresses

U
vq1

vt
ZK

v4q1

vs4
; ðA 1Þ

subject to boundary conditions

v2q1

vs2
Cb0 sin t Z 0 and

vq1

vs
Z 0 at sZ 1 ðA 2Þ

and

v2q1

vs2
Cb0 sin t ZUDt

v3q1

vs3
Cac

vq1

vt

 !
;

DrU
vq1

vt
ZK

v2q1

vs2
Cb0sint

 !
ac C

vq1

vs
at sZK1:

9>>>>>=
>>>>>;

ðA 3Þ

This hyperdiffusion equation represents a limit of the well-understood dynamics
of flexible, filament-like swimmers (Wiggins et al. 1998; Lagomarsino et al. 2003;
Lauga 2006). Distinct from previous treatments of such swimmers, here the
filament is subject to forcing at both ends. This leads to an apparent divergence
of the swimming speed if we attempted to apply equation (A 1) down to very
small frequencies, since rigid-body motion, which is the usual low-frequency limit
of (A 1), cannot simultaneously satisfy both sets of boundary conditions (A 2)
and (A 3).
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We follow Wiggins et al. (1998) by solving (A 1) for the filament shape, by
seeking solutions of the form q1ðs; tÞZ Imf~q1ðsÞeitg. Such a function will satisfy
(A 1) provided that

~q1ðsÞZ b0
X4
nZ1

Ane
Spanð1KsÞ where an Z exp

iðnK1Þp
2

C
3pi

8

� �
; ðA 4Þ

for some set of constants {An}. We have followed previous authors in defining
a dimensionless wavenumber SphU1=4 (Lagomarsino et al. 2003). The boundary
conditions (A 2) and (A 3) may then be written as a system of linear equations

A
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K1=S 2
p

0
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1
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where the components of the 4!4 matrix A are

A1n Za2
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e2Span ;
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2
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>>; ðA 6Þ

The coefficients {An} may be determined on inversion of the matrix A, although
their closed-form expressions are too complicated to be reproduced here.

Substituting in (3.11) we then obtain an expression for the time-averaged
swimming speed

hU$x̂iZM 2
nðaK1Þb20

2ðDtaC2Þ Im
X
n;m
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1
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C
ac

DtC2
ðe2anSp K1Þe2�amSp

�)
: ðA 7Þ

From this expression and the small Mn asymptotics, we can extract the
swimming speed in two important limits, as follows.

(i) In the case Mn/U/1, we may replace ð1Cb20 sin
2tÞsinð2ðfKj0ÞÞ by

2b0 sin t in equation (4.5) and then integrate up for j0. Substitution into
(3.20) then gives

hU$x̂iw 2ðaK1ÞM 2
nb

2
0

5aðDtC2=aÞ 4CDt 8C12acC6a2c C3Drð ÞC6Drð Þ2U
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(ii) In the case U[1, the system of linear equations (A 5) can be easily inverted
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up to terms of Oð1=S 4
pÞ, on entering which into (A 7) gives
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(b ) Large Mn

Here the physical picture of §4b starts to break down when UwOðM 2
n Þ, so that

we may write UZM 2
nU2. In this limit, which is easily accessed, if the parameter

space is explored by varying the dimensional length of the filament, the dominant
influence of viscous stresses extends even into the highly curved regions near the
ends of the filament. Analysing (4.6) in this limit, we find an expression for the
O(1) shape of the filament that is most easily expressed in stretched coordinates

~q1ðsÞZ
mK

m 3
KKm3
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eKmCSC C
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CKm 3
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in which the exponents mG fall out from the auxiliary equation m 2
GZ

ð1=2Þð1G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K4iU2

p
Þ, and we define branches for the square root so that

RefmGgO0. Substituting in the expression (3.17) relating swimming speed to
filament conformation, we obtain
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where the real part is understood to be taken. Just as for the small Mn, it is not
difficult to obtain the low- and high-frequency limits of this expression

(i) for Mn/U/M 2
n : hU$x̂iw Mnb

2
0ðaK1Þ

4ðDtaC2ÞU and

(ii) for U[M 2
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