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We discuss the theory of ligand receptor reactions between two freely rotating colloids in close proximity to one
other. Such reactions, limited by rotational diffusion, arise in magnetic bead suspensions where the beads are driven
into close contact by an applied magnetic field as they align in chainlike structures. By a combination of reaction
diffusion theory, numerical simulations, and heuristic arguments, we compute the time required for a reaction to occur
in a number of experimentally relevant situations. We find in all cases that the time required for a reaction to occur
is larger than the characteristic rotation time of the diffusion motignWhen the colloids carry one ligand only and
a numbem of receptors, we find that the reaction time is, in unitggf a function simply ofn and of the relative
surfacea occupied by one reaction patoh— src?/(4xr?), wherer is the ligand receptor capture radius arid the
radius of the colloid.

1. Introduction is usually prevented by coating the beads with a protective layer

Ligand receptor pairs build lock-and-key complexes through that in.turn reduces.the specific adhesion to pe detected, thg false
the formation of specific noncovalent boridBhey play a crucial negapves. A poss@le strategy.f.or improving test sen5|t|V|Fy
role in cell adhesion events that allow the communication, consists of enhancing the _spe_cmc adhesion rate by (_enforcmg
proliferation, differentiation, and migration of ceflsThe some dggree of_IocaI organization among CO”o'd‘?" Forinstance,
quantitative understanding and control of the molecular recogni- ultrasonic §tand|ng wave patterns have beenﬁiegmls purpose,
tion mechanisms is an important scientific challenge, not only concentrating the CO'.IO'dS near the n_o_dgs, with a resulting 2
in the fields of molecular and cell biology but also for orders of magnitude increase in sensitivity.

immunodiagnosida diagnosis of disease based on the detection Rece_““% Bibette et a_l. discoyered that the_ comb_ined use of
of antigen-antibody reactions in the blood serum. magnetic fields and specially designed magnetic colloids provided

Immunochemistry is often based on the precipitation of large unique control thhe spat|al. arrangement ofthe.partlélesder
complexes made of antibodies and antigeRer instance, if an a su@able appl_led magnetic field, the magnetic heads arrange
antigen has two different epitopes binding to two antibodies A Into I_|near chains W't_h a _flnely_ controlled, adjustable relatl_ve
and B, to reveal the presence of the antigen, one mixes the samplépac'ng' .When. th? field is switched off, the beads reversibly
to be tested with particles grafted with A and B. One usually disperse if no binding has occurred. The speed of assembly and
distinguishes between homogeneous and heterogeneous immuqlisassembly is faster in many cases than the characteristic binding

noassays. The homogeneous assay, an old, well-establishe €S ct))ffurrllctm:jnhahz_ed Earthles,t_h#? offe_nng an ulnrr_1atcr:<e_d tO.OI
technique, is made by simultaneously mixing the three com- to probe the adhesion kinetics with fast time resolution. Kinetic

ponents and by monitoring the formation of small clusters with StUdietS f_rom organized p_a_rticles functionalized with strept_aviqlin
changes in the scattered light. It is currently the simplest and and_b|ot|n are very promising. Th_ey allow one totest the kinetics
most straightforward test, with several hundred different tests ofblqrecognltlon complex formation as a function of the relevant
being available for practitioners. In contrast to homogeneous phy5|cal.parameters. ) . .

tests, heterogeneous assays comprise several steps of mixing Experlmentally, the react'|0n klnencs is better studied when
and rinsing; they achieve amuch better sensitivity. The sensitivity MOSt colloids of the magnetic chain carry the receptors but only
of homogeneous assays is generally limited by the poor control @ féW colloids bear a single ligand. Under these conditions, the
of the composition of the physiological sample to test, which formation of colloid aggregates larger than dimers is prevented,
may contain many adherent proteins. This brings about unwanteg@nd the time evolution of dimer formation can been monitored

nonspecific adhesion between colloids, the false positives, whichPY light diffusion techniques. The parameters associated with
the ligands and the receptors involved in the reaction can now

* Part of the Molecular and Surface Forces special issue. be well controlled, allowing for tuning the number or receptors
* Sejong University. or ligands per colloid or the spacer length and rigidity. The
S Institut Charles Sadron. theoretical challenge that we thus face is to directly relate the

I'UniversitePierre et Marie Curie.
(1) Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P.
Molecular Biology of the Cell4th ed.; Garland: New York, 2002.

measured reaction rates and the molecular ligand receptor

(2) Bongrand, PRep. Prog. Phys1999 62, 921-968. (5) Thomas, N. E.; Coakley, W. Ultrasound Med. Biol1996 22, 1277~
(3) Price, C. P.; Newman, D. Principles and Practice of Imnmunoassay 1284.
Stockton Press: New York, 1991. (6) Baudry, J.; Rouzeau, C.; Goubault, C.; Robic, C.; Cohen-Tannoudji, L.;
(4) Baudry, J.; Bertrand, E.; Lequeux, N.; Bibettel.Phys.: Condens. Matter Koenig, A.; Bertrand, E.; Bibette, Proc. Natl. Acad. Sci. U.S.2006 103
2004 16, R469-R480. 16076-16078.

10.1021/1a701639n CCC: $40.75 © 2008 American Chemical Society
Published on Web 10/23/2007



Ligand—Receptor Interactions in Colloid Chains Langmuir, Vol. 24, No. 4, 200897

Figure 2. Two colloids facing each other. The left colloid carries
one ligand, and the right colloid is fully covered by receptors. A

Figure 1. lllustration of the rotational diffusion trajectory of the  reaction occurs within the reaction cofies 6c, which corresponds
biotin position over the angle configuration space. visually to physical contact between the right colloid and the shaded

angular section on the left colloid.

parameters. Related problems have been tackled by scientist
studying bioadhesion in generaft® Our contribution not only
clarifies some of the open questions related to the underlying
dimensionality of reaction diffusion problems dealing with
surface-bound ligands or receptdrsout also provides a
convenient framework for interpreting the role of rotational
diffusion in colloidal reaction kinetics. Theoretically, we adapt
to this geometry a formalism introduced for polymers by'®dt*
and de Genné% and used by us in the context of specific
adhesiort®1°

In this article, we consider theoretically and numerically the
reaction kinetics of ligandreceptor binding between two adjacent
colloids in a chain. In the next section, we compute analytically . "
dimerization rates for the two limiting cases where one bead the bea}d and reads S',Enwo(g' ) = /2. All quantitiesf() are
carries a single ligand and the other bead is either fully covered Normalized such that, sin 6 do f(6) = 1. In the presence of
by receptors or carries only one receptor. We also provide react!ons, the probablllty distributiop(6, t) obeys a diffusion
qualitative arguments for understanding the dependence of the'®action equation of the form
reaction time on the different relevant parameters. Section 3 (6, 1)
presents numerical simulation results for the more general case —= - D,Voy(6,1) = —Q(8) v(6, 1) Q)
where one colloid carries an arbitrary number of receptors. The ot
last section discusses the experimental relevance of these resul
and presents directions for future developments.

Head number one, which can be described with respect to the
axis connecting the centers of the colloids by the usual two
angular variables{, ¢). We assume axisymmetric reactions for
which the reaction geometry is independent of the angjlé\
reaction is assumed to occur provided thas smaller than the
capture anglefc. This angle also defines the so-called capture
patch with radiugc = v2r(1 — cos )2

We consider the probability distributidH(6, ¢; t) describing
the orientation of bead number one at titn@nd in particular
the projected probability for axisymmetric systeg®, t) = / %’
dp W(0, ¢; t). In the absence of reactions, the equilibrium
probability distribution is independent of the angular position of

Rith Vg being thed component of the angular Laplace operator
andQ(0) being a reaction operator given by the sink function
2. Specific Reactions between Rotating Colloids Q(P) = qif 6 = Oc andQ(6) = 0 otherwise. In the limit of very

i i ) ) ) ) _ fast local reaction® — o, the reaction operator on the right-
We consider two neighboring colloidal beads ofidentical radius hand side of eq 1 can be replaced by the boundary congjitién

r that are kept close to one another. Each of the beads is free tq) =0 for 9 < 6. For convenience and without a loss of generality,
undergo rotational Brownian motion as displayed in Figure 1 p, js set equal to unity in the following text.

with the usual rotational diffusion coefficieBt, = 7,5 = ksT/ Under most relevant experimental conditions, the reaction
(87yr3) that has inverse dimensions of time, whégeis the kinetics is probed by some measure of the survival probability,
Boltzmann constant is the absolute temperature, apds the #(t) (i.e., the fraction of particles that have not reacted at time
solvent viscosity. t after the particles have been brought into intimate contact with
2.1. Reaction between One Colloid Carrying a Single  each otherg(t) = /7 sin 6 d6 (6, t)). Because the forces that
Ligand and One Colloid Saturated with Receptors.In this bring the particles together do not bias their orientation, eq 1

section, we tackle the simplest reaction geometry where onegpeys the initial conditiony(6, t = 0) = 19 = /,.

bead, say bead number one on the left of Figure 2, carries one  The solution of the reaction diffusion equation (eq 1) with the
ligand and bead number two is saturated with the complementaryprescribed boundary and initial conditions can be written as
receptors. The only relevant variable is thus the orientation of
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Figure 3. Evolution of the probability distributionp (6, t) before
and after the reaction has started. Times are given in unitgof
D% The extent of the reaction well is given here éay= 0.3 or
a relative capture surface = nrc?/(4nr?) = (1 — cos 0.3)/2=

0.022. In the 3D representation, the gray level of the spheres surfac

is proportional toy(6, t).
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Figure 4. Longest relaxation timeeng (—) of the probability
distribution (6, t) as a function of the capture angle and the
approximated valueap,r (---) given in the text. The relative value
Tiong/ Tappr IS given in the inset.

Stenhfest metho#l- We also give in Appendix A an equivalent
eigenmode expansion for the time evolution of the probability
distribution.

Lee et al.
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Figure 5. Survival probabilitys(t) for 6c = 0.3 ora. = 0.022. In
this case,tiong = 3.13. The plot and the inset show that an
exponential decay function well describg($) for most of the time
domain. The amplitude of the exponential function is computed
from the eigenvalue method presented in Appendix A.

up to 6c = /4 (oo = 0.15). For even smaller angles, one can
simply write Tappr = 7rot IN @& with In e= 1, which is accurate
to better than 16% up t6c = “/g (oo = 0.04).

The Laplace transform of the survival probabilits) = [’ gc

esin 6 do (60, s) can now be computed from eq 2

11+ cosO.

2=

sin 6 1
< P (—c0sfo)

2PV(S)(—cosé?C)r

(4)

whereP; ' is the associated Legendre function of indieesnd
—1. Note that the survival probabiliy(s) and the distribution
functiony (6, s) have the same pole and their inverse Laplace
transforms¢(t) and y (60, t) both asymptotically display an
exponential decay ofexp(—t/tiong), With the same decay time
Tiong- Figure 5 shows the time evolution ¢{t) obtained by a
numerical inverse Laplace transform. As the Figure shows, an
exponential function well describes the time evolution of the
survival probability, except at very short times. Appendix A
discusses the value of the amplitude associated with the
exponential decay. In practice, experiments that cannot resolve
very short time scales<< jong Will not detect any differences
from exponential behavior, and the reaction will appear to be a
first-order reaction.

When the full time evolution of the reaction kinetics is not
experimentally available, it might still be possible to access some

The reaction starts by instantaneously collecting all particles moment of the survival probabilitys(t). The simplest quantity

within the capture radius, consistent with the assumed limit of
very fastlocal reactiong,— . The particles outside the capture
radius follow free rotational diffusion until they hit the reaction

well. The trajectories of these particles started outside the capture

radius and diffused into the well region. Such trajectories last
a characteristic time, but a fraction of the particles miss the
reaction zone. That fraction increases as the capture radiu
decreases, implying that the longest decay tirpgy of the
probability distribution is larger thar:. This can be computed
from the smallest pole of eq 2 by SOViRY(-1/r,,9(—COSOC) =

0 in units of . The numerical result is displayed in Figure 4
as a function of the capture angl. In the relevant limit of
small capture radius: <r, the inset of Figure 4 shows also that
the longest relaxation timeong can be well approximated by

A)
In o

wherea = (1 — cosfc)/2 = arc?(4nr?) is the relative capture
surface. The approximatiagyprholds to less than 16% deviation

1

Tlong

1

Tappr

SR
TN

o~

®)

(21) Mallet, A. Numerical Inversion, Mathematica Packag2000.

S

that is usually available is the average decay time

EC= [ o) dt= lim ¢(s) = —In(ag) + o (5)

in units of .. Note that this is a less universal quantity than the
longest decay timeiong because it depends on the initial state

of the system. However, in the relevant limit where the capture
surface is smally < 1, the two quantities coincid& U= tiong.

2.2. Reaction between One Colloid Carrying a Single
Ligand and Two Neighboring Colloids Saturated with
Receptors.In magnetic bead experiments, each colloid has two
neighbors, which reduces the time needed for a reaction to occur.
The probability distribution obeys a rotational diffusion equation
similar to eq 1 but with different boundary conditiop$6, t) =
Ofor0< 0 < Ocandx = 6 = & — O¢ (Figure 6). In this case,
the solution can be written as

PV(S)(—cose) + PV(S)(COSH)

1
il 1 —
Pv(s)(—cosec) + PV(S)(COSHC)

2s

(0,9 = (6)

A procedure parallel to that of the previous section gives the
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Figure 6. Three colloids facing each other. The middle colloid
carries one ligand, anq the right anq Ieft colloids are fully covered 0.001 0.01 0.1 9
with receptors. A reaction occurs within the reaction cone® =< Figure 9. Ratio of the two longest relaxation times for the
Oc andw > 6 = & — 6c, which corresponds visually to physical i . ith ink and inks. Rel . ocinks
contact between the right or left colloid and the shaded angular onfigurations with one sink and two sinks. Relaxation tifih

of the configuration with two sinks is in the limit of very small

section on the middle colloid. ink ' . ;
capture angles close to half gf"% the relaxation time with one

sink. Note, however, the slow (i/'hxl) convergence.

0.5 =0
t=0%
0.4 pw(®) t=0.05
0.3 t=0.5
0.2
0.1 t=2
t=5 o
0.5 1 7 M~ 25 3

Figure 7. Evolution of probability distributiony (6, t) before and
after the reaction has started. Times are given in unii 0f There
are two reaction wellsat® 6 < 6c=0.3andr = 0 = Oc=x

— 0.3 with a total relative capture surface @wf= 2nrrc?/(4nr?) =

2(1 — cos 0.3)/2= 0.044.

Figure 10. Two colloids within the reaction range. The left colloid,
colloid 1, carries one ligand, and the right colloid, colloid 2, bears
one receptor. A reaction occurs within the reaction cone sf@

< 6cand 0= 0, < bs.

One also expects in this case an almost pure exponential
relaxation of the survival probability(t). Appendix B presents
an eigenmode expansion of both the probability distributien
(0,1) and the survival probability(t); it also provides the values
of the amplitudes of the relaxation modes. For comparison, the
value of the amplitude for the case @ = 0.3 is 0.339, to be
compared with the value of 0.897 shown in Figure 5 for one sink.
However, most of the relevant situations correspond to vanishingly
small capture angles, and the amplitudes of cases with one or
two sinks can be taken as unity, with the main difference between
the expected decays residing in the relaxation times. It can also
be shown in this case that the average reaction time is given by

Tio ng

01 02
Figure 8. Longest relaxation tim&ong (—) as a function of capture
anglefc and approximated valugy,: () given in the text. The
relative valueriong/Tappr iS given in the inset.

03 04 05 06

08
1-—

main relevant physical quantities. The evolution of the probability
distribution is presented in Figure 7. The presence of the two
reaction sinks around the two poles leads to a faster evolution
of the probability distribution, as can be seen by directly
comparing Figures 7 and 3.

The longest relaxation timeong is now given by the smallest
pole of eq 6, and it can be computed by SOIVIG-1/z,,9(—COS
Oc) + PV(_l/Ilong)(cosec) = 0. Figure 8 shows the dependence of
Tiong ON the reaction angléc and how it compares to the small-
angle approximation

1
@0= 5 In o +20—-1 (8)

2.3. Reaction between One Colloid Carrying a Single
Ligand and One Colloid Carrying a Single Receptor.We
consider in this section a reaction configuration at the opposite
limit in the range of surface coverage: as before, bead number
one carries one ligand, but bead number two carries only one
complementary receptor (Figure 10). The reaction geometry now
has a larger intrinsic dimension, and the orientation of both beads
needs to be specified here. We choose the two sets of angular
variables @1, ¢1) and @», ¢,) measured with respect to the axis
connecting the centers of the two spherical particles. We further
assume axisymmetric reactions for which the reaction geometry

Note that the relaxation time for this configuration with two 'S independent of angles and ¢.. A reaction is assumed to
sinks is, in the limit of a small capture radius, close to half of Occur provided thaf, is smaller than capture angfie and 6,
the longest relaxation time of the configuration with a single 1S Smaller than capture angl. Recall that these angles also
sink. Figure 9 compares the values of the two relaxation times define capture patch radit = v2r(1 — cos6c)2 andrs =
as a function of the capture angle. As expected, there is almosts/ér(l — cosfg)Y2.

a factor of 2 between the two relaxation times in the limit ofa ~ We consider probability distribution® (61, ¢1; t) and
small capture radius, indicating a negligible correlation between W2(62, ¢2; t) describing the orientation of the beads at titne
the reaction events at both poles. Note however that theand, in particular, projected probabilities for axiosymmetric
convergence is slow~1/In a). systemsy1(61, t) = f%” dp1W1(61, ¢1; t) and wo(O2, t) =

11 1 2 2

T Taomr Tron[a(@—o]\" [l — a)]) ()
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joz'” dp,W (02, ¢2; 1). In the absence of reactions, the equilibrium  The value of the average tinigis insensitive to a permutation
probability distributions are independent of the angular positions betweerrs andrc as required by the symmetry of the problem.

of the beads and read simpiy;Y(01) = 502 = Y». In the The situation whergc = rs is of particular interest. In this
presence of the reaction between the two beads, joint probability Symmetric limit, the average reaction time reduces to the simple
(61, 62; t) obeys the reaction diffusion equation expression
9yP(04, 65 1) r? 2In2
— Vo, (01, 05 1) — Vg (0, 0, 1) = F=7,,(8 In 2)r—2 = Toi g (14)

C

—Q(61, 6) Y(6y, 6 1) (9)

with reaction functiorQ(61, 02) = qif (0 < 1 < 6c and 0<
0, < 0s) andQ = 0 otherwise. When the initial distribution is

The reaction time in this configuration increases in inverse
proportion to the relative capture surfaces szr c?/(4xr?), which
is a much stronger dependence than the logarithmic variation

the equilibrium distributiony*(61,62) = y1161) 362) =*a, obtained when one of the beads is fully covered with receptors,
the solution of the above reaction diffusion equation can be 5 4 Beyond Numbers: Qualitative Arguments to Under-
formally written as stand the main Contributions to the Reaction Times.n the
1 " P p previous sections, we derived expressions for mean reaction time
. — ’ C i r ’ S i ' ' . . . . . .
P(0,, 0, 1) = 774 ﬁ) dt j(') sin @, do;, ﬂ) sin 6, d@y v [#Cand for asymptotic decay timggyin a variety of situations.

L ! , ) . The goal of this paragraph is to revisit our results from a more
(01, 05 1) Go(04, 05 t — 1) Gy(0,, 03 t — ) (10) qualitative point of view in order to distinguish the general features
] ) ] ] of the reaction diffusion behavior, such as those associated with
with Go(61, 61, 1) being the single-particle propagators of the intrinsic dimensionality or the number of degrees of freedom of
free diffusion case, as discussed in Appendix C. This formal the configurational space, from the specific features associated,
solution simply states that the probability distribution at time  for instance, with the spherical geometry or with the details of
is the equilibrium distribution depleted from all of those tne precise distribution of ligands and receptors on the colloidal
trajectories that have visited the reaction well at any previous g rface.
timet'. The bare propagatofS, in eq 10 are smooth functions We found that the asymptotic behavior of our expressions for
that are independent of the reaction sink positions, unlike the o1, results from simple geometrical considerations, among
probability distribution) thathas a much lower value (vanishingly \yhich the dimensiond of the configuration space plays a
small wheng — o) inside the sink and strong gradients nearby prominent role. The case of a spherical bead bearing a single
when the reaction cones are smé, < 1 andfs < 1.Inthe  |igand and surrounded by one or two beads saturated with
first approximation 1 and 6> can then be set equal to zero in  receptors belongs to thi= 2 situation, known as marginal and
the expression foGo. The Laplace transform of the survival  characterized by an extra logarithmic dependence on the size of
probability ¢(s) = /3 sin 61 do1 3 sin 65 do% (64, 65; S) can the system. The case of a bead bearing a single ligand and

be computed from eq 10, leading to surrounded by one or more beads bearing only a few receptors
has an intrinsic dimensiom, = 4; here also scaling trends are
o) = h(s) (11) derived from the geometrical features of the Brownian exploration
1+ sh(s) in configurational space. In contrast, the curvature of the
configuration space plays a lesser role.
whereh(s) is the Laplace transform of relaxation functibft). As far as the importance of the distribution and nunbef
In the limit of instantaneous reaction {~ ), the relaxation  capture patches around the beads is concerned, further arguments
function is given by for understanding our results come from the analogy that can be

0 ) drawn between the classical electrostatics on the one hand and
fo “sin6 do Gy(0, 0;1) ﬁ) sing do Gy(6, 0; 1) the reaction diffusion dynamics of particles evolving in a flat
-1

h(t) = ; ; Euclidean space on the other hand. These are the geometric
f “sing do weqf °sin@ dg arguments and electrostatic analogies that we discuss below.
0 0 . . . .
(12) 2.4.1. Geometric Argumentket us first consider a particle
o ) o that explores a sphere of radiydrying to find a patch of radius
The longest relaxation time of the survival probabilityis given rc, which is small compared with We adopt a coarse-grained

by the smallest pole in eq 11, which is the smallest solution of description of the Brownian trajectory, mapping it onto a random
1+ sh(s) = 0. The existence of such a pole also shows that the walk, with an elementary time stapacnand a finite numbeN
survival probability has a long-time exponential decaft) ~ of different accessible positions. The coarse-grained time step
exp{ —t/7iong}, that can be effectively interpreted in this limitas  scales naturally agaweh= rc?/(2Dy), with D; being the translational
resulting from first-order kinetics. Here it is more convenientto diffusion coefficient of the reference point along the surface of
calculate the average relaxation tiriiél= f; dt h(t) for an a sphere where both quantities are dimensionally related; by
initially homogeneous distribution(:, 62; t = 0) = /4. Because = D,r2. The number of sitebl is given by the minimal number
we are interested in the limit of small reaction patches, we can of patches necessary to cover the whole sphiire: 4r%/zr 2.
approximate the full angle-dependent propagator by its projection Note thatN = a1, with o being the ratio of the capture area
in a flat 2D plane a$5,4(0, 0;t) = 1/(4nxDit) exp{ —2(1 — cos to the total area. A classical result for bidimensional random
0)/(4Dt)}. In this limit, one can analytically perform the walks223states thatthe actual numiér of different sites visited

integrations over the reaction cones to obtain by a walker after a time intervdlis given by
4,—2 e [Ig e TIg rs TrI¢ e (22) Montroll, E. W.; West, B. J. IrFluctuation PhenomenaStudies in
=t o—|l—=+—|Inl—=+—|+|———|In|—= Statistical Mechanics; Lebowitz, J. L., Montroll, E., Eds.; North-Holland:
refsf\'s e/ \I's TI¢ re rg) \rs Amsterdam, 1979; Vol. 7.

(13) (23) Bouchaud, J. P.; Georges, Rhys. Rep199Q 195, 127-293, 321.



Ligand—Receptor Interactions in Colloid Chains Langmuir, Vol. 24, No. 4, 200801

N t 1 15 reaction-diffusion problem can be used to compute the
O = patchx | ( t J (15) electrostatic capacitances of arbitrarily shaped conductors from
n T stochastic numerical simulatiof&nspired by such connections,
pate we present here an electrostatic analogy for a stationary reaction
Hence, the typical timey, needed by a walker starting from a  diffusion process, which, as we shall see, provides useful
random position to find a particular patch (the capture zafe predictions for the behavior of a diffusive particle in the presence
amongN available positions obeys.(zy,;) ~ N. Solving forry, ~ of many capture zones.
leads to We start with a single small capture digkof radiusrclocated
at the center of a larger 2D flat disk of radiasand we name
ar 4r? p the vector position of a point, with= ||p|| being the distance
Tiyp = TpatcN In(N) +.. patchr 2 In( ) (16) to the center. We suppose that our concentration fig¢g does
¢ not show any explicit time dependence. This situation arises
When adapting the above expression to the case of a sphericalvhen particles are injected at the periphery such as to exactly
bead for whichN = a1, we finally get replace the ones that disappear when hitting the reaction zone.
One has to solve the electrostatic problem
Typ = ~Trot In(a) (17)

in agreement with our result eq 3.

By contrast, this logarithmic correction is absent in any
dimension equal to or larger thar= 3, whereN.- simply scales
as Cyt/Tpach??23 with the constanty depending on both the
dimension and the connectivity of the network that supports the Dy (p) = % In(ﬁ) (22)
walk, which we arbitrarily set equal to 1. In tlle= 4 situation fe
characterizing our two beads with a single ligamdceptor pair,

2
e

A[Dwy(p)] =0 (21)

along with the boundary condition(||p|| = rc) = 0 with solution

in the symmetric situationc = rs we find that Here,V(p) = Dw(p) plays the role of potential(p), and charge
Q is nothing but theate of particles falling into the reaction
N = Anr?\? _1 18 zone per unit of time (decay rate). We then compute the total
- 1.2 B o2 (18) numberN of particles present in the system:
C
and a repetition of the previous argument viith= t/7pachgives r
- N =27 " pdp y(p) = 2| In[—2| + | (23)
4 rc 2D, r.Je 2
_ 16r" Tpatch C
Ttyp_ Tpatchr 4 az (19)
¢ Mean lifetimer of a particle is given by the ratio between decay
Introducing the total volume of the configuration spaggrand rate Q and total populatior:
of the capture patchpach this geometrical argument gives, in
any dimensiord equal or larger than Jiyp = TpatcconfVpatch N 2D B a 1 rc2
In the case of two spherical beadsy = 47pactdrc? and the T= > =In=-5+= (24)
( p Q a e 2 24
relation becomes
T Ratioa?/2D is the time necessary to diffuse over a length equal

Toyp =" (20) to the linear size of the system. Introducing = a2/(4D;) and
surface ratioo. = zirc?ma?, we get
in agreementwith eq 14 up to the numerical value of the prefactor

that is not predicted by this approach. a2
T=1,IN|—

— 1+ a|=—1,(n(ce) —a) (25)

2.4.2. Electrostatic Analogyarious electrostatic analogies
can be drawn with reaction diffusion problems. The key to a
useful analogy is to recognize a Poisson equation in the reaction
diffusion process and to consider a flat Euclidean configuration Equation 5isrecovered when setting radiesjualto 2 (dlameter
space that greatly simplifies the technical difficulty of the problem. of the bead), and we find in the limit — 0 thatt™* = —7,t
Our previous geometrical arguments show that neglecting In(e) {1 — In(a)™Y] + O(In(c)~2), similar to eq 3.
curvature still allows one to capture the correct leading behavior ~ Athigher dimension, Coulomb potentiaV created by (hyper)-
of the reaction time. spherical charg® at a distance = ||p|| from the origin and

To start with, it is possible to propose an electrostatic analogy vanishing ato = rc is
for the transient diffusion dynamics of an initial distribution of
particle positions; these particles are subsequently absorbed at V(p) = D(p) = Q [1 1 ] (26)

C

the boundary (notedl’?) of the capture zone. In the presence of (d— g)adlrdc— 2 pd -2
many capture zoneg; and starting from a single particle located
anywhere outside them, the resolution of the associated elec-
trostatic problem gives the probability; that the particle
eventually ends its life captured at boundary; of patch ¢z.
These techniques are known, in the theory of probability, as
potential theory.

Conversely, the connection between the electrostatic capaci- ;4 zhou, H. X.. Szabo, A.: Douglas, J. F.; Hubbard, JJBChem. Phys.
tances of a set of perfect conductors in vacuum and the related1994 100, 3821-3826.

whereaqy is the (hyper)surface of a unit sphere. Repeating the
above argument, we find that total populatipnbetween the
reaction patch of radius: and an outer boundary of radias
scales as
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N= /" dpog p(p) =

Q
Dd(d — 2)

a‘d

d_2
e

+ rcz(g -

1) - gazl @7)

Clearly, in the limitrc < a, only the first term contributes.
Lifetime 7 follows:

2 al

Dr=—2—-2
T dd=2) 2

(28)

Again introducingz,ot = a%/(4Dy), the lifetime arising from the
electrostatic analogy is

_ 4 a2
T= trotm e (29)
C
If d =4 ando. = rc?/a?, then the lifetime becomes
_ Trot
=50 (30)

in agreement with eq 14, except for the prefactor.
2.4.3. Electrostatics Analogy for Many Reaction SitEse

electrostatic analogy helps us to understand the competition
resulting from the presence of many identical reaction zones in

the configuration space. The analogy shows thantheaction

Lee et al.

Table 1. Measured Values oD, for Different Random Step

Sizesdo
06 0.002 0.005 0.01 0.02 0.05
D 1.0x10°% 0.65x 10> 25x 10° 1.0x 10* 0.65x 103

The calculation in two dimensions is slightly more cumbersome
but also leads to a behaviar = 7a/n + S1trot + (B2 + B3)Tpatch
with 74 = 2710t In(a/rc) Now, the domination ofy/n over 17t
is only logarithmic, and a deviation from the linear behavior of
r;l with n is expected in all realistic cases, as implied by the
exact result of eq 7 and shown in Figure 9.

As a conclusion, these qualitative arguments give the right
scaling behavior of the mean reaction time but fail to predict
prefactors such as 2 In 2 in eq 14. They also predict the linearity
of the inverse reaction time in the number of patches as well as
the slow convergence to this linear regime in the case studied
in section 2.2, correspondingne= 2. The qualitative arguments
do not account for the more complicated result in eq 13. We
finally note that the rigorous approach of section 2, where the
initial concentration of particles is fixed, leads naturally to the
determination of the inverse reaction time (decay raté)
whereas the qualitative electrostatic analogy, with a fixed reaction
rate Q, rather gives reaction time

3. Numerical Simulation of Reactions between
Rotating Colloids

In this section, we numerically simulate the reactiaiffusion
process that eventually leads two rotating colloids to bind. We

zones behave as independent patches when their size decrease¥ill consider several different geometries similar to those

leading to a linear dependence in the numier the reaction

described analytically in section 2. We assume as before that the

rater, = nr; * + ..., which becomes asymptotically exactinthe WO colloids are always kept close to each other as shown in

limit of a vanishing patch sizec — 0.

Figure 2, which implies that the reactions are governed only by

The electrostatic analogy predicts the following behavior for the rotational Brownian dynamics of the beads that we now

the reaction time

T, a\2d-2
Th= E +pB ot + ﬁzfpatch-’_ ﬁ3‘[patc E (31)

with some logarithmic corrections in two dimensions and where
Ta= Tro@® ™~ erdc_ 2. In this expression, the first term represents
the leading behavior, the second term is a geometric subleadin

correction independent of the patch size, the third term is

“universal” geometric subleading term with a quadratic depen-
dencerc?, and the fourth term is a subleading correction related
to the mutual influence of the reaction sites (mutual polarization

of the conductors). These numbéis (2, andf; are constant
once sizea and positions of the patcheg are fixed. The fourth
term also encompasses te= 1 case, where the presence of

a capture patch is dramatic, whatever its size. It competes with
the third term ford = 2 and can be neglected at higher dimensions.

The corresponding expansion for the reaction rate is

1 _n NT,o NThatch NTpatch ax~?
o Ta(l [ﬁl r TP B e (32)

describe.

The orientation of each colloid is characterized by a unit vector
zthat is a function of two angle parametérs (6, ¢) of the unit
sphere,z = (sin 6 cos ¢, sin 6 sin ¢, cos ). The rotational
Brownian dynamics of the colloids can be materialized by the
random walk performed by in its configurational space. One
random step is defined by an infinitesimal rotation around the
current orientation, and it is performed by adding a small fixed

Yaluedo to angle® and choosing a random value of angle

0 < ¢ < 2. Figure 1 shows one realization of the random walk
performed byz on the unit sphere. The connection between the
number of moving steps performed and the physical tirse
provided by the rotational diffusion coefficieB), = [(t)2[4t.

We measurd, for one colloid and several values of angular
stepsdd. Correlation functiorf(p) = [Z(q + p)-z(q)Cis sampled
every 1000 steps for a total duration ofS1@ndom steps. By
fitting the correlation functiorf(p) with the expected shape
exp(—2D.p), we obtainD, for the given step size. The measured
values oD, are shown in Table 1, and they obBy= 0.25(6)>.
Below, we choose random step sizé = 0.01 that optimizes
the rapidity of the simulations and the compactness of angular
space exploration so that our simulations do not miss any of the
possible reactions.

and strong deviations from linearity are expected as soonasratio  3.1. Reaction between One Colloid Carrying a Single
N7 Ta is ON the order of unity. We defer the derivation of these | jgand and One or Two Colloids Saturated with Receptors.

results to Appendix D.

For a collection ofn patches located in a (hyper)spherical
volume of radiusa and dimensiord = 3 and in the limitrc —
0, 74 = r,otadlergf 2 clearly dominates the other terms in
expression 31, promoting, behavior. A numerical illustration
of the linearity ofz, * with n in the particular case af = 4 is

provided in the next section.

We first consider the case where one colloid carries a single
ligand and the second colloid is fully saturated with receptors.
In this limit, we perform only a simulation on the orientation of
the colloid bearing the ligand. As explained before, a reaction
occurs if the orientation vector is anywhere within the reaction
patch defined by angl@c. The reaction time is proportional to
the number of stepp; required to bring the orientation vector
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Figure 12. Reaction ratét(G* as a function of total receptor surface
Figure 11. Average reaction time for a colloid carrying a ligand coveragenc. for two different values of patch anglés andfs: (i)

that reacts (i) with one colloid<) saturated with receptors as (O) 6= 0s=0.03 and (ii) ®) 6c = 0s= 0.06. The saturated values
described in section 2.1 and (i) with the two nearest neighbors in displayed in Figure 11 and predicted from eq 5 are represented by
a chain of colloids ©), both saturated with receptors, as described (O) a dashed line and®) a dotted-dashed line.

in section 2.2. The solid lines are given, respectively, by eqs 5 and

8. Ll o N S TS S A

! i o, / 6 | |
into the reaction patchg < 6c. Its value will depend both on o 0.0 0.33.{0.0}3
starting orientatiorz(p = 0) and on the particular random walk ot T A il S B
realization. Our simulations compute dimensionless average A A o T T o] |
reaction times ofz= [p,D,Omeasured over 1000 different sets i i 8 il 0029 i
of initial random positions and different random walks. If the 0.05— ,ég i) 9840_3 il
initial random orientation falls within the reaction patch, then ol 15l
the colloid reacts immediately, consistent with the assumptions AR A ”-”} | ”-I”" |
insection 2.1. In particular, the dependence of the average reaction 00 o1 o3 Faall ol a5 foié
time on the patch size is expected under these conditions to i
follow eq 5. L (0600)

We compute in a similar manner average reaction times for Figure 13. Reaction rate as a function of surface coverage of the
the situation where the colloid bearing the ligand is in a chain streptfawcti)[ns_’ as_ymme(tjrlc Size of the reag:otl!on Fg‘d@'“d'catez
and can thus react with either of the two nearest neighbors in 9:93 for biotin size and 0.06 for streptavidin, afdis reverse

. . . . ; biotin/streptavidin patch size.
the chain. From the point of view of our simulation, we allow ) ) .
reactions to occur within reaction patches of angidocated coverage rate, the data is plotted against the combinafibr
at both poles. In this configuration, the average reaction time is €0S0c)/2 = no that measures the relative surface covered by
expected to follow eq 8 in section 2.2. an:htehsé Figure shows for two different reaction cone si@es
- o . s igure shows wo di i S

We plot in Figure 11 the average reaction time in unit®pf . - . i

for sim%lationsgperformed WitD, g 25« 105 as a functio?n = 0.03 and 0.06, the reaction rate increases linearly wihd

. . ver rating regime. The inset in the Figur
of capture angléc. The theoretical predictions (eqs 5 and 8) are then crosses over to a saturating regime. The inset in the Figure

A shows that in the linear regime the two data sets collapse onto
shown as solid lines, and the symbols represent computed value% single line of predicted slope 1/(2 In 2)0.7 (eq 14). As the
from the numerical simulations. Symbols and lines show almost : :

erfect agreement. As explained in section 2.2 and shown in number of receptors increases, the reaction rates appear to
P 9 ) P o - approach the saturation values displayed in Figure 11 and
Figure 9 for the longest relaxation time, the reaction between

lloid . ligand and t turated neiahbori predicted from eq 5. The simulation results indicate that the
one colloid carrying one figanc and two saturated neignboring asymptotic limit is better reached by the smallest patches. Note,
colloids is in practice 2 times faster that the reaction between

. . . . however, that the saturated case computed in section 2.1 is slightly
a coI_I0|d_W|th one ligand and one saturated colloid. The different from the high-coverage limit in our simulations as a
Ioga_rlthmlc corrections to the factor of 2 are dug to the weak result of the unavoidable presence of nonreacting interstitial zones
persisting correlations between events at opposite poles. between the different reaction patches.

3.2. Reaction between One Colloid Carrying a Single 3.3. Asymmetric ReactionsWhen one considers reactions
Ligand and One Colloid Carrying More Than One Receptor.  petween ligands and receptors of arbitrary size, it might be
We consider in this section the reactions between two colloids, conyenient to allow for the flexibility of having different capture
one colloid carrying a single ligand, and a second colloid bearing yagiir for the ligand andsfor the receptor that occupy different
n receptors. The receptors are randomly distributed over the re|ative fractionsic andas of the total colloid surface. We have
Surface Of the CO”O|d, W|th eXCluded V0|ume I’adws RQS, and Shown in Section 23 that the dimensionless average [ﬁme
the relative positions of the receptors are quenched. this case is expected to vary &= (acos) Y2g(x) with x =

We have argued in section 2.4 that the average reaction time(ac/as)¥2 andg(x) being the functiorg(x) = (x + x~3) In(x +
for a reaction between one ligand amdeceptors should scale  x71) — (x — x 1In x.
asn~!for systems where the average distance between reaction We plotin Figure 13 results for the reaction rate of asymmetric
patches remains larger than the size of the patch (i.e., for colloidspatch sizes. We consider two complementary cases, the first
with a receptor surface coverage well below saturation). We plot with 6c = 0.03 andfs = 0.06 and the second witti- = 0.06
in Figure 12 dimensionless reaction ratgr! as we increase the  andfs = 0.03. Becausg(X) is invariant under the inversion of
number of receptonswith fixed reaction cone siz@s. Each data its argumeng(x) = g(x~1), the initial slopes of the rate curves
point is an average over 500 different initial conditions for the should be the same if plotted as a functiom@dcos) Y2 The
ligand and receptors distributions. Because we expect that theFigure shows that this is indeed the case, and the obtained slope
reaction rate is in the linear regime a function only of the total agrees well with the analytical predictions.
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4. Conclusions Our predictions compare favorably with experimental results.
Inref 25, the reaction time of 100 nm colloids of biotin/streptavidin
pairs can be converted into a reaction patch size. For biotins and
streptavidins firmly bound to the surface, a capture radius as
small as a few angstroms is obtained, indicating the need for an
almost perfect orientation of the colloids for the reaction to occur.
If a spacer is introduced into the ligand, the receptor, or both,
then the reaction times decrease correspondingly, a variation
that can be quantitatively understood in terms of the patch size
computed within our theoretical framework.

One of the important simplifying assumptions of our work is
that the translational degrees of freedom associated with the
Brownian motion of the center of the bead are irrelevant. This

Recent progre&2°in the kinetic control of specific reactions
between colloids carrying ligands and receptors calls for arigorous
theoretical description of the reaction diffusion mechanisms
involved. The new techniques allow for the extraction of the
actual time evolution of the reaction survival probability from
experiments involving colloids bearing binding pairs with a
tailored molecular architecture. The challenge is thus to develop
atheoretical framework that is useful in connecting the observed
reaction rates to the molecular characteristics of the biorecognition
molecules. In this article, we considered reactions between two
freely rotating colloids kept close to each other. This is the simplest

model situation arising when magnetic beads are driven to form ; - . SO .
long chains by applied magnetic fields. For the bead size of seems indeed to be th_e case in the experiments Fhatlnsplred this
interest in the experiments, the magnetic force constrains theWO.rk' but.one can easily be confronted with S|tuat|on§ Wwhere twp
average position of the bead centers but does not act on thenelghborlng be?ds need to overcome some _repu_lswe potentlal
rotational component of the Brownian motion in order to be in contact. The associated diffusio@action

E . tallv. all of th loid . ber of problem combines both rotational and translational diffusion.
xperimentally, all of the colloids carry a given NUMDEr O g heoretical and numerical techniques used in the present
receptors, and a small fraction of the beads carry one ligand. A

. . ) — . "“work are also well adapted to provide answers for the more
reaction occurs when the ligand receptor pair comes within a L

. . . S complex situation.
reaction distance. Upon application of the magnetic field, the A 4 simolifvi i the ab ¢
beads are brought into contact, and a reaction thus occurs Whenh d sgcon Simp 'fyl'ntg asstl)Jr?p lon tcr?n(t:emi 3 a ienc?ho
by rotational diffusion, one ligand and one receptor align within ydrodynamic correlations between the two beads when they

some reaction angle. The value of this angle or correspondingly arr]e Wltt?ntttr?'e .retﬁctlon r?nge. (f‘llthohjgz prtewogs vfé(rjkats
the value of the capture reaction radius is one of the molecular S"OWNthatthis Isthe case formodei collolds at moderate distances,

characteristics of the ligand receptor pair. For instance, when thetl?t]e pr(_esencet_of a ?iﬁb',l['\zmg ﬁo_lgmir corort\_a CfOUId ccr)]up;fle tthe
two moieties are perfectly bound to the colloid surface, one rownian motions ofthe two collolds. Accounting for such efiects

requires alignment within a very small angle. A larger reaction is an interesting theoretical challenge for a better understanding

patch will suffice if a spacer is used to tether either the ligand of the reaction dynamics in these systems.
or the receptor to the surface.

We found that in all experimentally relevant situations the Acknowledgment. N.-K.L. acknowledges KOSEF for fi-

' . . . ._.__hancial support via grant F01-2005-000-10075-0. N.-K.L., A.J.,
time required for areactionto occuris larger than the characterlstlcF.T_' and C.M.M. benefited from the CNRS/KOSEF exchange

rota_tlonal time of the diffusion motlon?t, a_result that can be program “Adhesion Kinetics of Polymers and Membranes” under
easily understood by the number of diffusion paths that do not reference 20278

intersect with the reaction patch. Quantitatively, the reaction
time is determined by, the relative surface occupied by the
reaction patchu = zrc?/(4nr?) whererc is the capture radius
andr is the radius of the colloid.

When the colloids are completely covered with receptors, only
the diffusion of the ligand limits the reaction. In this asymptotic Equation 1 of section 2.1 can also be solved by the usual
regime, the average reaction tirfilis larger than the rotation ~ eigenmode expansion of the probability distribution
time ;¢ by only a logarithm factor of relative reaction surface
a, 0= —71, In a. If the colloid carrying the ligand can react t
with either of the two neighbors in the chain, then the reaction Yo, 1) = Z apP, (—cosb) ex;(— —) (33)
time is reduced by roughly a factor of 2. k Tk,

When the colloids carry only one receptor, the reaction ) ) . . )
diffusion problem has a larger intrinsic dimension, and we find WherePy is the Legendre function of the first kind amglis the
that the average reaction time has a stronger dependence on thgiScrete eigenvalues obtained frét(—cos6) = 0 and 1f =
value of the relative reaction surfad@[l= 7,(2 In 2)lo.. The vi(vk + 1) in units ofzo. Amplitudesay are extracted from the
reaction time in this case is thus larger than that in the saturatedPreiection ofy(6, t = 0) into the base functionB,:
case by a factor of-2 In 2/(a In o)

Appendix A: An Alternative Solution of the Reaction
Diffusion Equation for One Colloid Carrying a Single
Ligand and One Colloid Saturated with Receptors

For most experimentally relevant situations, the colloids carry j;” sin6 do y(6,t=0) ka(—cosﬁ)
afinite numben of receptors. We found by analytical arguments a = = - (34)
and by numerical simulations that for small numbers of receptors fe’c sin 6 do(P, (—cos))*

the reaction time decreases inversely with the number of receptors

(i.e., the reaction rate increases linearly with This linear . .
behavior crosses over for largeo the value corresponding to It can be easily checked that for a patch arfie= 0.3, six
saturation. We found numerically that linearity holds roughly Modes are enough to give an accurate representation of the

over half of the time gap, so the linear variation witls therefore distribution probability, except at very short times where
valid up ton ~ —2 In 2/@ In ). oscillations are still perceptible. The survival probabilft)

has a corresponding form

(25) Cohen-Tannoudji, L.; Bertrand, E.; Baudry, J.; Robic, C.; Goubault, C.;
Pdissier, M.; Johner, A.; Lee, N.; Thalmann, F.; Marques, C.; Bibette, J., Submitted (26) Stark, H.; Reichert, M.; Bibette, J. Phys.: Condens. Matt@005 17,
for publication, 2007. S3631-S3637.
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t
o) = z b, ex;{— T—)
Vk k

with the coefficientsb given by
j;z sin® do (6, t = 0) ka(—cose)f(:: sin6 do P, (—cos6)

(39)

b=

L sin 6 do(P, (—cos0))*
(36)

For all practical purposes, the survival probability in the limit
of small capture angle®: < 1 is well approximated by the first
term of the eigenfunction expansion (eq 35), and we show in
Figure 14 the value odb,; as a function ofjc.

Appendix B: Alternative Solution of the Reaction
Diffusion Equation for One Colloid Carrying a Single
Ligand and Two Colloids Saturated with Receptors

The inverse Laplace transform of the probability distribution
(60, 9) in eq 6 of section 2.2 can also be obtained directly by
an eigenmode expansion

(0.9 = alP,(—cost) + P, (cos0)] exp(— i) (37)

Tk

with v in this case being the discrete eigenvalues obtained by
solvingP,,(— cos#) + P, (cosf) = 0, and one also has/=
v(vk + 1) in units of o The amplitudesy are given by

T — 9C
Jie
fez “"sing do[P, (—cosb) + P, (cos6)]?
(38)

sin6 do y(0,t= 0)[ka(—cos¢9) + ka(cose)]

ak:

The survival probabilityp(t) follows a similar expansion

t
o) = b exu(— —) (39)
Vk Ty
with the coefficientsb given by
bk =
S~ " sin6 do (0, O)[P, (~cos6) + P, (cos6)]
o % sing d6[P, (—cosh) + P, (cos6)]
< (40)

fez “*sing do[P, (—cosb) + P, (cos6)]?

Figure 15 shows the decay of the value of amplitbgef the
survival probability as a function ofc. For most relevant
purposes, the value can be taken as unity.

Appendix C: Accuracy of the Solution Obtained from
the Propagator

The solution of a diffusion reaction equation can be obtained
by solving a diffusion equation with the appropriate boundary
conditions in only a limited number of cases. The cases treated
insections 2.1 and 2.2 for a reaction between one colloid carrying
a ligand and one or two saturated colloids are among the rare

examples where such a simple method can be applied. This simple
method cannot be used, for instance, for the case solved in section
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Figure 14. Variation of amplitudd, of the eigenfonction expansion
of survival probabilityg(t) as a function of capture angl.
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Figure 15. Variation of amplitudeb; of the eigenvalue expansion
of survival probabilityg(t) as a function of the capture anghe.

2.3 for one colloid with one ligand reacting to one colloid with
one receptor. Inthese cases, a different method needs to be applied
to extract the relevant physical information; this method often
relies on decoupling approximations that we now discuss and
validate.

We discuss in this Appendix the accuracy of the so-called
propagator-based solution to the reaction diffusion equation (eq
1). The solution is based on the formal rewriting of the differential
equation (eq 1) as an integral equation
P(O, 1) =y* -

Jodt [ sing do' Gy, 05t — t) Q) (e, t) (41)

for the case where the reaction starts at timé@ from equilibrium
distributiony (0, t = 0) = y®4. Q(0) describes the shape and rate
of the reaction well, ano(0, 0'; ) is the propagator associated
with the corresponding free-diffusion problem in the absence of
reactions

9Gy(0, 6'; 1) ) , )

— ViGo(0, 0';1) =08(0 — ') O(t) (42)

that measures the probability of finding a particle at tinaed
angled, knowing that it was at anglé' at timet = 0. The
propagator can be computed either from the eigenmode expansion

Gy(0,0';1) =

1S P (cosh) P (cost’ -D + 1)t (43
2mz=o m(c0s0) P (cost’) exp{ —D,,;m (m+ 1)t} (43)

with P, being the usual Legendre polynomials, or from the

equivalent Laplace-transformed form

Gy(0, 0'; 9) =

- _LPV(
2D, sintv(s)

9(cosb) P, 4(—cosb’) (44)
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with P, being the Legendre functions. Teelependent index is c _. .
computed fromy(v + 1) = —s/Dyor. Both forms assume an initial h(t) = fo Sin ¢ d6 Gy(6, 0:1) _
equilibrium distribution ofyed = /5.
When the reaction sink is represented by a delta fun&i@h
=qo(6 — 0c), eq 41 assumes the simple time convolution form
As for previous cases, the survival probability here also has the
Y(0,t) =i — qJ: dt' Go(6, O t — ) (O, t) (45) longest relaxation time, obtained by solving—1(1/tiengh(—
lhiong = 0, identical to the relaxation time of the probability
that can be easily solved by Laplace transform and written as distribution, ziong = 7ot In a.
The previous study shows that for the case of one bead with
00,9 = »* 1— aGy(0, Oc; ) (46) one ligand and one bead saturated with receptors there are only
' S 1+ 9GO, bc: 9 marginal differences associated with the details of the reaction.
Indeed, requiring that the reaction takes place exacty=a)c
In the limit of very fast local reactions, one can take the limit or allowing for reactions anywhere inside the paiich 6 leads
g — oo to obtain an expression for the Laplace transform of the essentially to the same reaction behavior in the relevant limit of
probability distribution identical to expression 2 in section 2.1. small patches.

In this description of the reaction diffusion problem, the  The sjtyation for the case of one bead carrying one ligand and
probability distribution holds for the whole angle domdire one bead carrying one receptor is rather different. We have
[0, 7] and vanishes only at the poifit= 0c. The longestrelaxation ¢ sigered in section 2.3 a reaction model based on the reaction
time of this problem is thus equivalent to the longest relaxation ¢,,ction Q(01, 02) = qif (0 < 01 < Hc and 0< 6, < O¢) and

time of solution 2, but the survival probabiligft) and the average 5 — ) gtherwise. Such a model states that a reaction occurs
time #= [ (t) dtwill, in principle, be different. Note however —\henever the ligand and the receptor are simultaneously inside
that the differences are only marginal in the limit of a very small 4 reaction patch, centeredét 0. This implies a decoupling
capture radius. approximation in the mathematical treatment of the solution,

When the reaction sink has a finite width, sag9) = q for and one mi ; _
> : ght wonder why the delta functi@{f1, 62) = qo(01
0= 6 = fc andQ(0) = 0 otherwise, eq 41 does notreduce to _ 0,), that allows for an exact solution of the problem is not

atime convolution. However, a functional simplifying assumption used. It can easily be shown, along the same lines of the

can be made .by noticing that_ for small reaction patches the calculations discussed in this Appendix, that the requirement of
propagator varies only slightly inside the reaction sink and one having both the ligand and the receptor at the same angular

can thus write the time convolution equation position is too stringent and leads to a divergent reaction time.

; 1 (51)
S, ©sin6 do y*

0,1) =y —q [ dt GO, 0;t—t) [°
V.9 =y qj; ol .) */:’ Appendix D: Electrostatic Analogy for Many Reaction
Sing' do' y(o',t') (47) Sites

and the corresponding solution for the probability distribution,

. o We consider a collection of identical spherical reaction zones
here in the limit ofq — oo

% in dimensiond. We call o4 the (hyper)area of a sphere of
radius 1 so that the volume of a pateghchreadsoars/d and the

Oc . e
w0, 9= »* 1- Gy(0, 0;9) J; sin 6 do 3 total volume of the configuration spaceigns = oqa?/d. The
’ S fec sin6 do Gy(6, 0:9) P electrostatic problem consists of finding the chargédmorne by
0 o each conductar?;, then calculating the potentis(p) generated
(48) between the conductors, and finally integrating this potential
Inserting the explicit form (eq 44) for the propaga®4(0, O; over the volume between the conductors.
s) and the value of the equilibrium distributiagrfd = Y, yields When isolated, each sifecreates a potential;
1 P,g(—cos6)
Y(0,9) =—|1— a9 1
J;) sin@ do

(49) wherep; stands for the relative distance from the centeg/zf
The expression above should also be compared with the LaplaceThe average potential due to the other charges ngas
transform of the probability distribution (eq 2) of section 2.1:

the angular dependence is identical, and the longest relaxation n q { 1
time, given by the smallest pole gSﬁC sin 6 do P,(s)(—cos#), oV, = ' — =8V (53)
has a similar asymptotic dependencergfy = 7ot In o in the A=1(d — Z)Od\r‘é* 2 ri‘j’* 2

limit of small patches. The Laplace transform of the survival

ilit = 7 si ientl
probability ¢(s) = [y sin 6 df y(6, §) can be conveniently .. ri being the mutual distance betweeh and ;. Because

written as .
all the conductors must be simultaneously set equa t0 0,
h(s) shift Vi cannot depend on indéxThis is achieved by adjusting
#(s) = T+shs (50) chargesj, which now depend on the relative spatial arrangement

of the reaction zones. In practice, the segomust fulfill n —
whereh(s) is the Laplace transform of the relaxation function 1 linear constraints, leaving only one degree of freedom for the
h(t) given by total chargeQ = Y ,q;. Thus, in the limitrc < rj ~ a, 5V reads
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n d—2
oV = } oV, = n-1 Q - Ta= d%42 %Trot (58)
nS N (d-2o4¢ fc
1 1 G + o Let us evaluate the polarization corrections. In dimendighe
— Z _— field generated by a conductiois E4(pi) = gip; ‘“ /oy, and the
2n; j£Ti=(d — 2)oy ri‘j‘ -2 polarization gained by the second conductor is the product of the
electric field and the total volume (polarizability)jldrg of the
__ (-1 @ I & Q (54) conductor: Py = o4Eq(r;)ra/d. This reaction potential is about
n(d — 2)oy rdcf2 ggal~? Pijriji(dil) near the first conductor. This typically shifts the
potential by another amoudl/
whefe theC; constant is of order unity anq depends only on the SV = Qrgaz —2d (59)
relative spatial arrangement of the reaction sites. The resulting
potential and the reaction time is modified by an exftepaic{rc/a)?2,
which is negligible ford > 3.
Vioilp) = z Vi(o) — OV (55) The calculation in two dimensions can be made in a similar
|

way, with some extra care due to the nondecreasing behavior of
Vi(pi) at largep;. We find that the potential shitV reads

has the property thatits spatial average value around any boundary h—1Q [a nogtg o [

9% is zero. In the equatiom, represents any point outside the oV = In[= In[—
reaction zone. Because by assumptific) = 0 and because 27n (rc) 2T 2T a)

the potential created by the other charges is harmax 0),

the average value &f.; at boundary 7, coincides at the lowest — (n—1)Q In(i) + QGC, (60)
order with its value at the center of;, and shift—dV ensures 27n e

thatit vanishes for all site®;. This holds because by assumption
the size of the patches is small compared to the inter-patch
distances. The only deviations to the equipotential condiion

= 0 are anisotropic and correspond to the mutual polarization

whereC; is again on the order of unity and independent of the
patch size.
Our total populatiorN reads

effect discussed below. Then, the total number of partisles Q] [a 2 2
given by the integration over all configuration space of the total N= D, %'n(a) T B@a + By (61)
potentialvi. The integration of all of the constant terms lead
to a common factor, — Nvpacnrepresenting the total volume, — and the reaction time is
exclusive of then reaction zones. The integration of the -
nonconstant terms (power Iawd ~?) presents no difficulty, but T, = 24+ B1Trot T BaTpaten (62)
again, care must be taken to remove the excluded volume n
contributions. As a result, we find that thdimensionsgd > 3, with B, = (n— 1)/(2n) In(a/rc) + Y/4andp. = 4B, being constants
of order In@/rc) or unity, B; is a first-order constantg,,r =
Q 1 a 5 ) /4Dy, Tpaich = Trof'c?/@?, and 7a = —7ror IN(@). Now, the
+ Ba” + By (56) domination of termry/n over B17,o is only logarithmic. Finally,

) _ d—2
Dy| n(d - 2) e in two dimensions, the polarization corrections lead to another

termpstparch Which, except for the logarithm la{rc), compares
with B, andB; being two constants of order unity, and With S2Tpatch
We conclude that the electrostatic analogy supports our
T, numerical findings concerning the reaction rate as a function of
T = T Bilroe T Bolpacn (57) the surface coverage, presented in Figures 12 and 13. With an
effective dimensionality ofl = 4 and a ratia ¢/a of order642x
> 0.01, itis not surprising that the linear behavior of the reaction

i = = — 2 — 2[2
with ﬁl 4Bl, 182 4Bz, Trot a /4Dt, andl’patch Trotl C /a rate withn holds.

wherer,is the leading asymptotic time corresponding to a single
capture site LA701639N



