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Separation-driven coalescence of droplets: an
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Recent microfluidic experiments by Bremond, Thiam & Bibette (Phys. Rev. Lett.,
vol. 100, 2008, paper no. 024501), along with simulations by Yoon et al. (Phys.
Fluid, vol. 19, 2007, paper no. 102102) and near-contact experiments and simulations
by Manica et al. (Langmuir, vol. 24, 2008, pp. 1381–1390), have demonstrated that
two droplets can coalesce as they are separating rather than upon their collision.
We analyse the experimental microfluidic flow configuration for the approach to
contact with a two-dimensional model: we apply a lubrication analysis followed
by the method of domain perturbation to determine the droplet deformation as a
function of time. We find the approximate shape for the deformed droplet at the
time of contact. In particular, for droplets of radius R, moving apart according
to h0(t) = h0(0) + αt2, where 2h0(t) is the separation distance, we define a non-
dimensional parameter A= 4CμR2α1/2/πγ [h0(0)]3/2, where μ is the viscosity of the
continuous phase; γ is the interfacial tension; and C depends on the viscosity ratio
between the droplets and the continuous phase. Our model suggests that there exists
a critical value Acrit = 16/33/2 ≈ 3.0792, below which separation is unlikely to facilitate
the coalescence of the droplets. The predictions are in good agreement with available
experimental data.

1. Introduction
The interactions between two or more droplets in flow play an important part in

multiphase systems, such as emulsions in which the size distribution is determined by a
balance between droplet breakup and coalescence. For example, in order to facilitate
the creation of stable emulsions or to enhance the destruction of emulsions, we
need to better understand the dynamical features of flows that cause coalescence.
Much previous research has focused on drop deformation in unbounded flows
(Rallison 1984; Stone 1994), interactions significant in the flow of dense suspensions
(Loewenberg & Hinch 1997), local deformations that are precursors to coalescence
(Jones & Wilson 1978; Nemer et al. 2004; Aarts & Lekkerkerker 2008) and dynamics
of the coalescence process (e.g. Eggers, Lister & Stone 1999). In this paper we are
motivated by recent experiments illustrating coalescence in bounded configurations
when two drops are effectively pulled apart (Bremond, Thiam & Bibette 2008).
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Figure 1. (a) Schematic of two droplets deforming and separating while moving through a
smoothly constricting channel. (b) Time-sequenced images from experiments by Bremond et al.
(2008) for droplets with radii 30 μm. The stresses resulting from separation create two facing
nipples, which facilitate coalescence. (c) A close-up of an experiment showing the formation of
two facing nipples prior to coalescence. The scale bar is 20 μm. (d) Schematic of the coordinate
system for describing the region between two separating droplets. The undeformed circular
shape hc(x, t) is indicated by the dotted curve.

Experimental results have shown that coalescence can occur when two deformable
droplets move past one another in two-dimensional shear flow (Yoon et al. 2005). Also,
Yoon et al. (2007) calculated numerically the extrusion formed as two nearly spherical
droplets move apart in axisymmetric flow and suggested qualitatively that coalescence
may occur; Loewenberg & Hinch (1997) made similar remarks for droplets in shear
flow. This observation is supported by Manica et al. (2008) who suggested through
both experiment and numerical modeling that when deformed by separating the
interfaces with the intention of increasing its thickness, a thin film can become thinner.
In addition, microfluidic experiments by Bremond et al. (2008), sketched in figure 1(a)
and shown in figures 1(b)–1(c), demonstrate that two droplets, approximately circular
in shape, generate facing nipple-like extrusions, which lead to coalescence during
separation, not during collision.

Here, we present an analytical study of the microfluidic flow system utilized
by Bremond et al. (2008). In § 2.1, we approximate the time-dependent droplet
deformation due to droplet separation. The steps in our analysis follow the theme of
other studies on the small deformation of droplets. First, we calculate the base flow
for an undeformed shape. The stresses generated by such flows are then used in the
normal stress balance to determine the perturbed shape of the droplet; these ideas
are similar in approach to analyses of droplet deformation in unbounded linear flows,
such as in Taylor (1934) and Barthés-Biesel & Acrivos (1973). With the coordinate
system as shown in figure 1(d ) in which the droplets have a separation distance
2h0(t) and radius R � h0, the typical length scale for flow along the gap between
the droplets is � ∼

√
2Rh0. The associated pressure reduction is then �p ≈ μḣ0R/h2

0,
where ḣ0 = dh0/dt is the time-dependent rate of separation of the droplets and μ

is the viscosity of the continuous phase. The interface is then expected to deform
with magnitude h̃ such that γ h̃/�2 ∼ �p, where γ is the surface tension. Hence, by
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scaling arguments, we expect the deformation h̃ = O(μḣ0R
2/γ h0). In § 2.2, we study

how such shape deformations approach contact and suggest an approximate criterion
for coalescence. Nevertheless, we recognize that the hydrodynamic approximations
that we make become invalid in the last stages approaching coalescence, for which
detailed numerical simulations are needed (Yoon et al. 2007; Manica et al. 2008). In
§ 3, we apply our results to the typical experimental system studied by Bremond et al.
(2008). Finally, in § 4, we compare our results to the available experimental data from
Bremond et al. (2008).

2. Theoretical model
We examine the simplified case in which droplets move through microchannels with

height (in the z-direction) 2b that is much less than the width (in the y-direction)
w. The undeformed droplets, circular in the xy-plane, have radius R ≈ w/2 >b. In
this limit, the fluid flow both around and between the droplets is primarily in the
xy-plane. Thus, we expect the droplets to deform primarily in the xy-plane, and the
smallest dimension b contributes only to an increased capillary pressure within the
droplets. Consequently, we model the flow between two separating droplets as that
between two slightly deformable cylinders.

Also, consistent with experiments, with a separation distance 2h0(t) much smaller
than the radius of the droplets, i.e. h0 � R, the flow in the gap is controlled by
the boundary condition at the interface. For the case of lubrication flows between
two spherical droplets, Davis, Schonberg & Rallison (1989) have shown that the
mobility of the interface depends on two dimensionless parameters h0/R and μ/μd ,
where μ is the viscosity of the continuous phase, which fills the gap between the
droplets, and μd is the viscosity of the droplets. We expect the features of their
analysis to apply to our case of two nearly cylindrical droplets. For example, they
determined that when the continuous phase has a much lower viscosity than the
droplets (μ/μd �

√
h0/R), the interface can be approximated as a no-slip boundary;

we expect this limit to also apply when sufficient surfactant exists in the system. There
is also an intermediate regime when

√
R/h0 � μ/μd �

√
h0/R, where, although the

interface is mobile, the lubrication approach yields results within a constant scaling
factor C which depends on (μ/μd)

√
R/h0. In the regime in which the continuous

phase has much higher viscosity than the droplets (μ/μd �
√

R/h0), it becomes
necessary to consider the flow and the stresses inside the droplets. However, the
experiments that we consider fall within the first two cases (e.g. the systems used by
Bremond et al. 2008 have μ/μd ≈ 3), allowing us to focus on the fluid motion in the
gap region and the associated stresses. Although boundary conditions are important
to coalescence (Yoon et al. 2007), because we focus on a lubrication model for the
droplets’ approach to contact resulting from the separation of their centres of mass,
we believe the above assumptions to still be applicable.

2.1. Droplet deformation analysis

We now choose the origin of the coordinate system x = 0 to be within the gap between
the two circular droplets, which have a separation distance of 2h0(t), as shown in
figure 1(d ). We assume the droplets to be separating at a rate 2ḣ0(t), where the dot
denotes the time derivative. The associated flow creates a stress field that deforms
the droplets from the initial circular shape. To determine the deformed shape of the
droplets and, hence, the potential for droplet to coalesce, we start by determining
the pressure p in the region between the two separating droplets. To simplify the
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problem, we first model the droplets as circles, and since h0(t) � R, we approximate
the droplet shape in the gap region to be parabolic with a typical length scale

√
2Rh0

in the x-direction. Through a lubrication analysis, which assumes the flow field to be
quasi-steady (p → p0 as x �

√
2Rh0), we then find

p(x, t) − p0 = − Cμḣ0(t)R

2h0(t)2
(
1 + x2

2Rh0(t)

)2
, (2.1)

where p0 is the reference pressure (Leal 1992). Here, the constant C depends on
μ/μd; in the limit μ/μd → 0, C = 3 (Davis et al. 1989). From this result, we can see
that when the separation between the droplets increases, e.g. ḣ0(t) > 0, the pressure
decreases within the region between the two droplets, thus driving deformation
towards coalescence as suggested qualitatively by Yoon et al. (2007), Bremond et al.
(2008) and Manica et al. (2008). Our subsequent analysis neglects the effect due to van
der Waals interactions, which are of importance only at significantly smaller length
scales.

Here, we will analytically obtain the deformation of the droplet over time as well
as identify the conditions that lead to contact. The curvature κ(x, t) of the surface of
the droplet results from the difference between the pressure outside of the droplet, p,
and the pressure within the droplet, pd , via the relation p −pd = γ κ(x, t), since within
the limits appropriate for lubrication analysis, viscous stresses can be neglected in the
normal stress balance. This description is self-consistent, since all perturbations to the
initial undeformed shape occur in the narrow region between the two droplets, where
the lubrication analysis is applied. Therefore, at the interface, (2.1) becomes

p0 − pd − Cμḣ0(t)R

2h0(t)2
(
1 + x2

2Rh0(t)

)2
= γ κ(x, t). (2.2)

Although we model the undeformed droplets to be two-dimensional, in the normal
stress balances, we need to account for the curvature contribution in the yz-plane. Our
sign convention for curvature is chosen with respect to the coordinate system shown
in figure 1(d ), where the origin is the mid-point between the centre of the two droplets,
outside of the droplets. Hence, constricted in the z-direction to a height of 2b, an
undeformed droplet with radius R in the xy-plane has curvature κc = − (π/4R) − 1/b,
where the factor of π/4 was derived by Park, Gorell & Homsy (1984) and Park &
Homsy (1984). Therefore, pd − p0 = γ ((π/4R) + 1/b), and (2.2) reduces to

−
(

π

4R
+

1

b

)
− Cμḣ0(t)R

2γ h0(t)2
(
1 + x2

2Rh0(t)

)2
= κ(x, t). (2.3)

Because b � w ≈ R, deformations in the yz-plane can be neglected as a first
approximation, since they are expected to be smaller than those in the xy-plane
by O(b/R). Thus, we assume that curvature in the yz-plane, −1/b, remains constant,
and accounting for the curvature in the xy-plane, κ(x, t) can be written as

κ(x, t) = −1

b
+

π

4

∂

∂x

⎛
⎝ ∂h

∂x√
1 +

(
∂h
∂x

)2

⎞
⎠ . (2.4)

Although we can now integrate (2.3) and (2.4), we have found it helpful to focus
first on simplifying κ by treating curvature changes as the result of perturbations
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to the circular shape. Because the deformation of the droplet is small compared
to the size of the droplet, R, we can apply the method of domain perturbation to
determine the shape of the deformed droplet. We let h(x, t) = hc(x, t) + h̃(x, t), where
hc(x, t) describes the shape of the unperturbed circular droplet (figure 1d ) and h̃(x, t)
describes the separation-induced deformation as a small correction to hc(x). Then,
since h0 � R and |dhc/dx| � |∂h̃/∂x| in the region of lowest pressure and largest
deformation, we obtain an approximate equation for curvature,

κ(x, t) = κc + κ̃(x, t) ≈ κc +
π

4

∂2h̃

∂x2
(2.5)

By substituting (2.5) into (2.3), we arrive at the normal stress balance,

∂2h̃

∂x2
= − 2Cμḣ0(t)R

πγ h0(t)2
(
1 + x2

2Rh0(t)

)2
. (2.6)

At this point, we non-dimensionalize (2.6) by using X = x/
√

2Rh0(t) and H = h̃/D

with D = 2Cμḣ0(t)R
2/πγ h0(t). We then integrate with the condition that as X → ∞,

∂H/∂X → 0 to obtain

∂H

∂X
= −

[
X

1 + X2
+ arctan(X) − π

2

]
. (2.7)

Finally, we integrate (2.7) with the condition that at X → ∞, H → 0 to obtain the
(similarity) solution for the deformation,

H (X) = −
[
X

(
arctan(X) − π

2

)
+ 1

]
. (2.8)

This result, H = h̃/D < 0, is consistent with the assumption that separation-induced
deformations favour possible contact between two droplets.

Using this solution for deformation, we determine the approximate deformed shape
of the droplet h(x, t) = hc(x, t) + h̃(x, t) to be

h(x, t) = R + h0(t) −
√

R2 − x2 − 2Cμḣ0(t)R
2

πγ h0(t)

×
[

x√
2Rh0(t)

(
arctan

(
x√

2Rh0(t)

)
− π

2

)
+ 1

]
. (2.9)

This result shows that since the droplets are moving apart from one another,
ḣ0(t) > 0, deformation grows with time and is most prominent near x <

√
2Rh0(t).

In addition, (2.9) agrees with our initial prediction for the magnitude of deformation
h̃ = O(μḣ0R

2/γ h0), which we arrived at in § 1 through a scaling argument.

2.2. Approximate condition for droplet contact

Although our analysis in the previous section assumes |h̃(x, t)| � h0(t), as set as
precedent by other applications of domain perturbation, we now consider |h̃(x, t)| →
h0(t). According to (2.8), the largest deformation, or the deformation magnitude,
occurs at X = 0, where |H | =1. Thus, we find the dimensional magnitude of the
deformation h̃max (t) to be

h̃max (t) =
2Cμḣ0(t)R

2

πγ h0(t)
. (2.10)
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Figure 2. Typical shape of a droplet deformed by the separation of the droplet pair. The
dotted line indicates the undeformed shape, while the solid line indicates the deformed shape
at time of contact. Half of the separation distance of the undeformed droplets at time of
contact is h0(tc) = 0.1R.

Within this lubrication model, in order for contact to occur, the magnitude of the
deformation must equal half of the distance of separation between the two droplets.
In other words, at the time of contact tc, h0(tc) = h̃max (tc), which leads to the condition

[h0(tc)]
2 =

2Cμḣ0(tc)R
2

πγ
. (2.11)

The conditions shown in (2.10) and (2.11) are applicable for any time-evolution
equation for droplet separation, h0(t), as long as h0(t) > 0. With this additional
information, we can determine the time of contact with (2.11). A specific example
based on the experiments by Bremond et al. (2008) will be discussed in the next section.

Based on these results, the approximate deformed shape at the time of contact, tc,
is

h(x, tc)

R
= 1 +

h0(tc)

R
−

√
1 −

(
x

R

)2

− h0(tc)

R

×
[

x/R√
2h0(tc)/R

(
arctan

(
x/R√

2h0(tc)/R

)
− π

2

)
+ 1

]
. (2.12)

Figure 2 shows the shape of the deformed droplet at the time of contact, superimposed
upon that of the undeformed droplet, for h0(tc) = 0.1R. As shown, the deformed shape
near the point of contact is wedge-shaped with h = (π/23/2)

√
h0(tc)/Rx.

3. Application to the separation of two droplets in a linearly
constricting channel

To simulate conditions of the experiments by Bremond et al. (2008), we first need
to determine the appropriate time evolution of droplet separation. For the segment
of the microchannel that linearly narrows with inclination angle β , as shown in
figure 1(a), we can describe the width of the channel as w(ỹ) = w(0) − 2ỹ tan β ,
where ỹ is along the length of the channel. We then apply conservation of mass
〈u(0)〉w(0) = 〈u(ỹ)〉w(ỹ), where 〈u(ỹ)〉 is the average flow speed, to arrive at

〈u(ỹ)〉 =
〈u(0)〉

1 − 2ỹ tan β

w(0)

. (3.1)
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For ỹ � w(0), we approximate ỹ ≈ 〈u(0)〉t , and (3.1) becomes

〈u(ỹ)〉 − 〈u(0)〉 ≈ 2〈u(0)〉2 tan β

w(0)
t. (3.2)

We then assume that the droplets follow the flow of the continuous phase and use
〈u(ỹ)〉 = dỹ/dt to track the droplet movement. Therefore, 〈u(ỹ)〉 − 〈u(0)〉 = 2dh0(t)/dt ,
and we find the separation velocity to be

dh0(t)

dt
=

〈u(0)〉2 tan β

w(0)
t. (3.3)

Initially, the two droplets have a separation of 2h0(0) and zero separation velocity,
since they start with the same constant velocity. We integrate (3.3) to arrive at
h0(t) = h0(0) + αt2, where α = 〈u(0)〉2 tan β/2w(0) is the separation parameter that
describes the two separating droplets. In the experiments by Bremond et al. (2008),
0.1 m s−2 <α < 10 m s−2 (see § 4).

With this description of the time evolution of droplet separation, we can determine
the conditions for systems like that used by Bremond et al. (2008), in which
coalescence by droplet separation is demonstrated. Equations (2.10) and (2.11) become,
respectively,

h̃max (t) =
4CμR2αt

πγ (h0(0) + αt2)
(3.4)

and [
1 +

(
tc

√
α

h0(0)

)2
]2

=
4CμR2

πγ

αtc

[h0(0)]2
. (3.5)

By non-dimensionalizing (3.4) and (3.5) with T = t
√

α/h0(0) and Hmax = h̃max/Dmax ,
where Dmax = (2CμR2/πγ )

√
α/h0(0), we arrive, respectively, at

Hmax (T ) =
2T

1 + T 2
(3.6)

and

T 2
c −

√
ATc + 1 = 0, where A =

4CμR2α1/2

πγ [h0(0)]3/2
. (3.7)

In the limit of A � 1 in which R � h0(0), A ∼ T −1
c . Therefore, we estimate the contact

time, tc, as

tc ≈ γ [h0(0)]2

μR2α
. (3.8)

Although approximate, these results illustrate the most important features of the
time-dependent deformation of the separating droplets as well as the subsequent
potential for coalescence. First, we can observe that without coalescence, the extruding
deformation, with magnitude Hmax (T ), initially grows rapidly with time until T =1
and then retracts slowly, as figure 3 exhibits. Initially, viscosity effects dominate and
create a pressure difference between the inside and the outside of the droplet capable
of overcoming the surface tension effect, thus creating the nipple extrusion. As the
droplets move further apart, viscous effects decrease until they are no longer capable
of overcoming the surface tension effect, which restores the droplet’s spherical shape.
Therefore, if near contact between two droplets is not achieved within this initial
window of time, i.e. T � 1 or t �

√
h0(0)/α, coalescence will be unlikely to happen,
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Figure 3. (a) Non-dimensional maximum deformation Hmax = |hmax |[πγ /(2CμR2)]
√
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as a function of non-dimensional time T = t

√
α/h0(0). (b) Dimensional maximum deformation

|hmax |(m) as a function of time t(s) for α = 0.1m s−2 (dash-dotted line), α = 1 m s−2

(dashed line) and α = 10 m s−2 (solid line) with h0(0) = 0.1 μm, R = 30 μm, μ= 3 × 10−3 Pa s,
γ = 50 × 10−3 Nm−1 and C = 3, based on experimental values from Bremond et al. (2008).
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Figure 4. Non-dimensional time of contact for the extruding phase, Tc = tc
√

α/h0(0), as a
function of the non-dimensional parameter, A = 4CμR2α1/2/πγ [h0(0)]3/2 (solid line). The
dashed line represents the physically unrealistic scenario in which coalescence occurs during
the retracting phase.

since the nipple will retract while the gap between the droplets continues to grow. This
result corresponds qualitatively with the three-dimensional simulations performed by
Yoon et al. (2007) in their figure 25.

We examined this critical point more explicitly by illustrating that the contact time,
Tc, increases as the non-dimensional parameter, A, decreases, as shown in figure 4. The
dotted line represents the physically unrealistic solution in which h̃(t) = h0(t) while
the nipple is retracting, not extruding; this scenario is unlikely because we expect the
droplets to typically coalesce upon first contact, which occurs during the extruding
phase. We thus identify Acrit = 16/33/2 ≈ 3.0792 and Tcrit = 1/

√
3 ≈ 0.5774, below which

the two droplets do not come into contact. This approximate limit for near contact
can be attributed to many reasons. As γ increases, μ decreases or R decreases, the
restoring surface tension effects increase relative to the deformation, inducing viscous
effects and leading to decreased deformation magnitude, which subsequently cannot
match or exceed the separation magnitude. In addition, when h0(0) increases, not
only do the viscous effects decrease, but the separation distance also increases. On the
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Figure 5. (a) Experimental data showing the time evolution of the distance d between the
centres of mass of the two droplets. The origin of time is determined when the first droplet
enters the region in which the channel begins to constrict. The continuous line represents the
fit d(0) + 2αt2, α = 1.8 m s−2. Inset: Image of two droplets entering the linearly constricting
channel. (b) Coalescence time as a function of the separation parameter, α, for several
experimental conditions (q0 and qw denote the oil and water flow rates, respectively): chamber 1,
qo = 400 μl h−1, qw = 100 μl h−1 (�); chamber 2, qo = 400 μl h−1, qw = 100 μl h−1 (�); cham-
ber 1, qo = 200 μl h−1, qw = 50 μl h−1 (�); chamber 2, qo = 200 μl h−1, qw = 50 μl h−1 (�).

other hand, when α decreases, although the separation increases more slowly, the rate
of change of the growth of the distance between the droplets is directly correlated
with the magnitude of the deformation generated; hence, decreasing α ultimately
decreases the deformation magnitude.

4. Comparison with experimental results
In the experiments by Bremond et al. (2008), pairs of water-in-oil (hexadecane)

droplets are generated by splitting a train of single droplets formed by a flow-focusing
module. The water flow rate qw as well as the oil flow rate qo are controlled by two
syringe pumps (phd 2200, Harvard Apparatus). The complete history of a droplet
pair is recorded with a high-speed camera (Fastcam-X 1024, Photron) mounted on
an inverted microscope (TE300, Nikon). Many thousands of coalescence events are
recorded and automatically analysed using image-processing programs developed
with MATLAB.

As previously discussed, the droplets collide in the expanding portion of the channel
and separate in the constricting portion of the channel (figure 1a). This experimental
system is characterized by two lengths: �1, the length of the channel in which the
width is constant, and �2, the length of the constricting portion. Two configurations
were used: �1 = 60 μm and �2 = 200 μm (chamber 1); �1 = 120 μm and �2 = 200 μm
(chamber 2).

Previously, we prescribed h0(t) = h0(0) + αt2 to describe the separation motion of
the droplets in a linearly constricting channel. The results from Bremond et al. (2008)
support this functional form as shown in figure 5(a). Because the resolution of the
optics involved in imaging the experiments does not allow for accurate assessment
of h0(t), the results are reported in terms of the distance, d(t), between the centre of
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mass of the two droplets. Since we assume R to be constant and h0(t) = (d(t)−2R)/2,
by fitting the data to the curve, d(t) = d(0) + 2αt2, we can estimate α without direct
measurement of h0. For the results in figure 5(a), we find α = 1.8 m s−2.

Next, we examined the relationship between the separation parameter, α, and
the experimentally measured time of coalescence, which we assume follows our
estimate for time of contact, tc. Equation (3.8) predicts tc ∝ α−1, which is in good
agreement with the trends shown in figure 5(b). The dispersion of the data likely
results from not incorporating the effects of R and h0(0), as suggested by (3.8).
In our experimental system, variations in R lead to significant variations in h0,
which, due to the limitation of the resolution of the optics involved, could not be
accurately evaluated. Consequently, the effects of both R and h0(0) could not be
assessed. Nevertheless, we note that the data shown in figure 5 with tc  10−3 s, when
interpreted using (3.8), are consistent with h0(0)  0.3 μm. Future work can focus on
developing experiments to more accurately determine the values for h0(0). We believe
that by incorporating the effects due to h0(0), we can better assess the details of our
theoretical model.

5. Conclusion
We have analytically studied the near-contact phase of the phenomenon of droplet

coalescence during separation by employing a lubrication analysis in combination
with the method of domain perturbation. Our general results for the magnitude
of deformation, hmax (t), as well as the general shape deformation are in good
agreement with the experimental results and the result from dimensional analysis.
For a linearly constricting channel in which the half-separation distance follows
h0(t) = h0(0) + αt2, we found that for typical systems in which R � h0(0) and
A= 4CμR2α1/2/πγ [h0(0)]3/2 � 1, the time of contact, tc, is proportional to α−1; this
finding agrees with the experimental results by Bremond et al. (2008). In addition, for
such systems, there exists a critical parameter value, Acrit = 16/33/2 ≈ 3.0792, below
which the separation-driven droplet deformations are unlikely to bridge the separation
distance between the two droplets. We believe that these ideas are applicable to
separation-driven contact of other deformable systems. More insight on the evolution
of film profile can be obtained from numerical simulations based on the full thin-film
lubrication equations (e.g. Manica et al. 2008) or, more thoroughly, from boundary
integral simulations of the complete two-fluid flow problem.
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