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Abstract
Completing a Swiss-cheese theorem of Lieb and Lebowitz (LL), we prove that
any population of spheres with power-law radius distribution ∝1/rdf+1 can
completely fill 3D Euclidean space if the exponent is such that 2.8 � df < 3.
This sufficient condition extends considerably the known part of the ensemble
of space-filling populations of polydisperse spheres. The self-similar spatial
arrangement of the polydisperse spheres related to the theorem is discussed
using a numerical example with df = 2.875. By calculating the small-angle
scattering structure factor of the resulting packing, we found it to present several
crystalline peaks indicating some regularity. This is significantly different from
the featureless structure factor of an Apollonian packing which represents total
disorder. We thereby argue that the LL algorithm for filling space with spheres
is fundamentally different from Apollonian constructions.

Keywords: dense sphere packing, Apollonian sphere packing, fractal interface

(Some figures may appear in colour only in the online journal)

1. Introduction

Dense vitreous materials are much sought after because of their unique technological appli-
cations. Indeed, they manifest remarkable mechanical properties such as high resilience and
high formability [1]; they often possess amazing optical and electrical properties [2]; their
thermal properties are anomalous [3] etc. Two classic examples of dense vitreous materials
are (1) vitrified ceramics [4] and (2) ultra-high performance concrete [5]. A main issue for
the practical preparation of such materials is that the disordered local structure requires a lot
of energy (thermal and mechanical) to obtain and control [6]. Therefore, any avenue to lower
energy consumption is of paramount interest. An efficient way to get around the problem is to
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pack together a large population of small particles to form a paste as dense as possible before
melting or sintering the paste to eliminate tiny voids and obtain the final vitreous material [7].
Intuitively, it is clear that such an approach requires a very wide initial size distribution since
one has to use smaller and smaller pieces to occupy the likewise increasingly smaller voids
remaining in the packed system during the filling process. Hence the crucial question: is there
an optimal particle size distribution that can give the most compact paste by simple mixing?

We address here this question when the particles are all spherical in shape, because spher-
ical particles are either natural in some cases (e.g. extremely dense emulsions of spherical
droplets may result from elastic energy minimization [8]), or provide good approximation for
small pebbles or convex grains. In spite of Ulam’s packing conjecture [9] stating that spheres
are one of the worst possible cases of all the convex bodies for occupying space densely
[10, 11], the number of space-filling populations of spheres is nonetheless expected to be very
limited and thus relatively easy to identify. From the current state of the art, we know that poly-
disperse sphere populations with power-law distributions, n(r) ∝ 1/rdf+1, of the sphere radii
r, can geometrically fill space entirely without overlaps when the exponent df has specific val-
ues: df � 2.47 (numerical result) [12], df � 2.73 (numerical result) [13], any value of df such
that 2.47 < df < 2.88 (numerical range) [14] and an infinite number of discrete values of df

between 2.9885 and 3 (exact result) [15].
Interestingly, the last result, engendered by a little-known theorem of Lieb and Lebowitz

(LL) [15], is often neglected in modern discussions pertaining to dense sphere-packings. A
brief literature search in the domain reveals a multitude of publications relating to Apollonian
packing algorithms, but few mentions of the LL algorithm (likely due to its description having
been casually tucked away by the authors within a dense mathematical work). In the present
work, we seek to revive general interest in the LL theorem, by extending it to demonstrate that
any population of spheres with 2.8 � df < 3 (exact range) can be packed as densely as desired
without overlaps. In fact, several naturally-occurring distributions are empirically known to
be within these bounds, e.g. (see [16] for extensive data) gravel (df � 2.82) or glacial tills
(df � 2.88). We compare LL and Apollonian packings in the 3D space, deducing that the
extended LL theorem authorises space-filling populations of spheres previously inaccessible
by Apollonian constructions.

Our initial motivation was to compare packings resulting from the LL algorithm and pack-
ings found in our own experiments of extremely dense emulsions of spherical droplets [8, 17]
that we had established were Apollonian in nature. We then discuss in the present work sphere
arrangements in only the 3D Euclidean space. Similar work could also be interesting to per-
form in the 2D space, though it may be challenging to obtain experimental physical results in
the 2D space for comparison.

1.1. The mathematical context

The enduring popularity of Apollonian constructions has a historical root. From the math-
ematical point of view, Leibniz [18] was the first to propose an algorithm to cover the 2D
Euclidean space with an infinite number of disks of decreasing radii, based on a geometric con-
struction introduced by Apollonius de Perga that builds a disk tangent to three existing disks.
Much later, Mandelbrot [19] conjectured that one could use a similar algorithm to fill the 3D
Euclidean space with spheres arranged in a self-similar way. A rigorous self-similar packing
algorithm based on inversive geometry was proposed in [14]. All Apollonian algorithms are
based on a maximal geometric condition and is generically called ‘osculatory packing’ [12] or
‘Apollonian packing’ [20]. In 3D, it is based on the iterative addition of the largest interstitial
sphere compatible (that is without overlaps) with the biggest void remaining in the system [21].
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The algorithm can be used to build regular and disordered packings alike, attaining the final
volume fraction φ = 1 [22] (in the mathematical sense, the interior of the set complementary
to the sphere packing is of null measure).

An osculatory packing definitely different from Apollonian has been suggested by Manna
in [23]. In the Apollonian algorithm, the nth sphere is the largest sphere consistent with the
empty pore space left by the n − 1 spheres, whereas in Manna’s algorithm, the centre of the
nth sphere is chosen randomly in the empty pore space of the n − 1 spheres and its radius is the
largest possible in that place. Manna’s algorithm is also known as a packing-limited growth,
i.e. the growth of the nth sphere is limited by others already in the packing. Both algorithms
are in the group of the ‘osculatory algorithms’ since the nth sphere is tangent to at least one of
the n − 1 spheres, but the Apollonian algorithm is known to require significantly fewer small
spheres than Manna’s case.

1.2. The self-similar assumption

In the following, we consider the problem of totally filling a unit cube with a polydisperse
population of perfect spheres.

By firstly packing spheres all of the same radius, one can obtain a system of maximum
volume fraction φ = π/3

√
2 � 0.74 if the arrangement is regular (face-centered cubic lattice),

or φ � 0.64 if the packing is disordered (random close packing) [24]. The next step is to fill
with smaller spheres the voids remaining in the system. Using again monodisperse spheres of
radius smaller than the radius of the largest void insphere, one can increase the volume fraction
of the system. But because of their complicated shapes, one cannot totally fill the voids in such
a way: when this second step is completed, many smaller voids still remain. These voids can be
partially filled in the same manner; by iterating the process using increasingly smaller spheres,
all voids are eventually filled completely when the sphere radius tends to 0. Note that such
schematic description of this algorithm does not require any length scale to be defined, and
one can then expect the resulting packing to be self-similar. Therefore, we are now looking for
a radius distribution of the spheres, n(r), in the form of a scale-free power law [25, 26]:

n(r) ∝ 1
rdf+1

. (1)

The radius distribution is written here as a continuous distribution of the radii, r, but discrete
distribution can be used as well (and will be used later on). The exponent, df , of the power law
is a positive constant equal to the fractal dimension of the matter-void interface [27, 28], that
is, asymptotically, the union of the surfaces of all the spheres forming the packing [23].

1.3. The fractal dimensions of the Apollonian packing and related sphere packings

The value, dApo
f , of the fractal dimension of the 3D Apollonian packing has been variously and

precisely estimated from intensive numerical works [12, 21]:

dApo
f = 2.4739 . . . . (2)

It would appear that the value (2) is characteristic of an osculatory packing process as it is the
same whether the initial packing is regular or random. Slightly different values of df have also
been found for non-osculatory, packing-limited growth algorithms. [13, 29].

Besides the commonly discussed Apollonian packing, Lieb and Lebowitz [15] also
described filling space with populations of spheres whose radii are power-law distributed as
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long as the corresponding value of df is larger than 2.9885. In the following sections, we exam-
ine how the original LL theorem may be extended down to df = 2.8, by gradually approaching
a spherical geometry from known space-filling polyhedra (known as plesiohedra).

1.4. Wesler’s theorem

A theorem by Wesler [30] states that the total surface of any sphere-packing filling the unit
cube is infinite. Then, applying the theorem to the radius-distribution (1), the value of df must
be in the range:

2 � df < 3. (3)

This condition was tentatively improved upon by Aste [26], who argued that among all the
space-filling polydisperse sphere packings, the Apollonian packing is the one with the lowest
possible value of df ( i.e. with the smallest proportion of tiny spheres). Then, a necessary
condition stronger than (3) for spheres filling space could be: 2.4739 � df < 3; up to now, this
argument remains a conjecture.

In the following, we demonstrate and discuss sufficient conditions of the form (3) on the
value of df for a population of spheres with radius distribution (1) to be space-filling. As
the argument uses space-filling polyhedra, we start first in setting out a short review of these
objects.

2. Space-filling polyhedra

2.1. Definitions of two geometric quantities related to convex bodies

Let us call ω(r) a finite convex body, in which r is the radius of the insphere, that is the largest
sphere that can fit inside ω(r) [31]. We introduce two characteristic numbers related to ω(r):

• the asphericity number [11] γc is the ratio between the radius of the circumscribed sphere
(that is the smallest sphere containing ω(r)) and the radius of the insphere. The index c, in
‘γc’, is to remind that this number is related to the circumscribing sphere

• the number αv comes from the volume of ω(r), written: αv4πr3/3. The index v, in ‘αv’,
reminds one that this number is related to the volume of the convex body

These characteristic numbers are practical for measuring the distances in terms of r for the
convex body ω(r).

Note that if ω(r) is the sphere of radius r, these quantities are respectively: γc = 1, αv = 1.

2.2. Introducing the plesiohedra

Perfect tessellation of space with identical polyhedra has been a long-pondered problem. An
anecdote attributed to Aristotle (4th century BC) is well known: he proclaimed without proof
in his book De Caelo that space could be filled by identical tetrahedra [‘among solids (it is
agreed that) only two (fill the place that contain them), the regular tetrahedron and the cube’].
This conjecture was disproved in the 15th century by Regiomontanus in a lost manuscript
[32, 33]. Even back then, it was already recognized that drawing up a complete list of space-
filling polyhedra was not as straightforward a problem as one would have thought.

Many different convex polyhedra have been found to fill 3D Euclidean space by tiling identi-
cal copies of them. They are generically named plesiohedra [34]. We shall restrict the following
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discussion to three convex plesiohedra selected among the five parallelohedra, because they
are simple and rather ‘close’ to the sphere (figure 1). We list these selected plesiohedra in
decreasing order of γc (smaller γc corresponds to more sphere-like polyhedra):

• the cube is the only Platonic solid to be a plesiohedron. Its characteristics are:
γc =

√
3 � 1.73 and αv = 6/π � 1.90. The Cartesian coordinates of the 8 vertices of the

cube ω(r) centred at the origin (0, 0, 0) are: (±r,±r,±r). The cube is the Wigner–Seitz
cell of the regular simple cubic lattice.

• The rhombic dodecahedron is an Archimedean solid that has: γc =
√

2 � 1.41 and
av =

√
18/π � 1.35. The Cartesian coordinates of the 14 vertices of the rhombic

dodecahedron ω(r) centred at the origin are: (±r/
√

2,±r/
√

2,±r/
√

2), (±r
√

2, 0, 0),
(0,±r

√
2, 0) and (0, 0,±r

√
2). The rhombic dodecahedron is the Wigner-Seitz cell of the

regular fcc lattice.
• The Kelvin’s truncated octahedron is another space-filling Archimedean solid that has:
γc =

√
5/3 � 1.29 and av = 8/π

√
3 � 1.47. The Cartesian coordinates of the 24 vertices

of the truncated octahedron ω(r) centred at the origin are: (0,±r/
√

3,±2r/
√

3) and the
six permutations of the three coordinates. The truncated octahedron is the Wigner–Seitz
cell of the regular bcc lattice.

3. General sufficient space-filling conditions

Let us consider the ensemble whose elements are all the populations of perfect spheres with
discrete distribution of their radii, rk, such that:

{nk, rk}k=0,1,2,... means nk spheres (nk ∈ N
�) of radius rk, (4)

k → rk is a decreasing sequence of positive real numbers ,

nkr3
k � 1√

32
for any k = 0, 1, 2, . . . (5)

∞∑
k=0

nkr3
k =

3
4π

(space-filling condition of the packing), (6)

∞∑
k=0

nkr2
k = ∞ (infinite surface of the packing). (7)

For every population in the ensemble above, the index k is called the rank. The condition
(5) expresses that the ensemble of monodisperse spheres of rank k cannot constitute a volume
fraction larger than the maximum value π/3

√
2.

Though necessary for spheres with discrete radius distribution, (5)–(7) do not constitute
sufficient conditions to represent a space-filling population of spheres. To do so, one has to find
a geometrical algorithm able to build iteratively the sphere-packing into the unit cube, adding
nk spheres of radius rk without overlap at each rank k. This way is analogous to invoking a kind
of Maxwell’s demon able to put each sphere at its correct place in space [35].

3.1. Sufficient condition using the LL algorithm

The following algorithm—named ‘LL algorithm’ since it was introduced by Lieb and Lebowitz
in [15]—can be used to build perfect packing of spheres complying with (5)–(7). We describe
below the algorithm starting from the 3D cube of edge length 1, though any initial 3D compact
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Figure 1. Sketch of the three plesiohedra used as examples in this work. From left to
right: the cube, the rhombic dodecahedron and the truncated octahedron. The respective
circumscribing spheres show how ‘round’ these plesiohedra are.

domain can, in principle, be used (in [15], the unit ball was used instead). In the case of the unit
cube, the unit length is defined as the cube edge, i.e. all particle radii in the formulae below
will be expressed on the scale of the cube-edge length.

3.2. Running through the LL algorithm

At rank 0 of the sphere packing, n0 spheres of radius r0 are placed without overlap inside
the empty cube of edge length 1 (periodic boundary conditions are used). Placement of these
spheres can be regular or random, and they act as seeds for the packing. Such placement is
possible because of (5). When the rank 0 is completed, the volume V0 of the domain Ω0 left
empty in the cube is:

V0 = 1 − 4π
3

n0r3
0 < 1. (8)

In the LL algorithm, a loop of iteration builds the system of rank j from the system com-
pleted at rank j − 1, that is when all the nk spheres of radius rk, k = 0, 1, . . . , j − 1, have been
positioned inside the cube by the Maxwell’s demon. The main loop is as follows:

• loop ‘ j − 1 → j’:

- Step 1: part of the empty domainΩ j−1 is covered with a dense regular array of ν j non-
overlapping identical plesiohedra ω(r j), each of them totally included inside Ω j−1

(that is none of these polyhedra intersects the boundaries of Ω j−1). This step can
always be completed as long as the value of of r j is so small that ν j � 1.

- Step 2: n j plesiohedra are chosen amongst the ν j, and replaced by their inspheres.
The selection of the plesiohedra is random. The value of nj is given by (4). The
ν j − nj remaining polyhedra are left empty. Clearly, this step can be achieved
provided n j � ν j.

After the loop has been completed, it results in the void Ω j−1 of volume

V j−1 = 1 − 4π
3

j−1∑
k=0

nkr3
k < 1, (9)

in the system.
The loop above starts from j = 1, and is continued for all positive integerinteger positive

values of j. The radii rk being all > 0, the sequence of void volumes V j−1, as written in (9),
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Figure 2. The 2D LL algorithm in the unit square, described as a Swiss-cheese model.
At rank k = 0, an initial tessellation with big squares is used and the initial holes are the
open disks inscribed in n0 squares. These initial circular holes are kept at rank k = 1.
Then, n1 smaller squares of edge length r1 are created to tile the plane, wherein open
disks are randomly inscribed so long as they do not intersect with any other holes. At rank
k = 2, smaller tiling squares of edge length r2 are used in which newer open disks are
now inscribed without overlaps with all existing holes, etc. In this manner, the iteration is
performed such that the plane at rank k is punched by a number of non-overlapping open
disks, and, for k →∞, the unit square is full except for the complementary set of the
union of all the open holes. This complementary set is of null measure if the condition
(6) holds.

is decreasing and its limiting value vanishes for j →∞ because of the complete space filling
condition (6). A sketch of the iterative process as a Swiss-cheese construction, is shown in
figure 2 in the 2D case.

It is clear from the construction shown in figure 2 that the LL algorithm is a variant of
the Sierpiński algorithm used to build 3D Menger cubes [19]. Let us recall that, similarly
to the asymptotic complete sphere-packing, Menger cubes have asymptotically zero volume
(corresponding to (6)) and infinite surface (corresponding to (7)). Noticeable differences are:
(1) open spheres (open disks in 2D space) are removed at each rank, instead of open cubes for
the Menger sponge; (2) LL algorithm is basically random (though it is not mandatory) whereas
Sierpiński algorithm is usually regular.

The only condition (by induction) required for the LL algorithm to be continued to infinity
is that n j � ν j at each rank j. This is an explicit sufficient condition, but hard to use because the
intricate shape of void domains complicates the task of calculating the numberν j of plesiohedra
included in the void domain Ω j−1. To overcome this difficulty, one could search analytically
for the lower-bound number of plesiohedra, depending on the actual shape of Ω j−1. If such a
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lower-bound can be found (named R j), the less stringent sufficient condition n j < Rj can be
used instead for each value of j = 1, 2, . . . .

3.3. Determining Rj

Considering the system at rank j − 1, the domain Ω j−1 is the union of ν j complete polyhe-
dra ω(r j) (‘complete polyhedron’ means here: ‘totally inside Ω j−1’) and of a domain δΩ j, of
volume δV j, which is too thin to accept any complete polyhedron ω(r j):

V j−1 = ν jv j + δV j. (10)

By construction, the domain δΩ j cannot include any sphere of diameter 2γcr j (that is the diam-
eter of the sphere circumscribing a polyhedron ω(r j)). Then δV j is smaller than the sum of the
volumes of the outer shells of width 2γcr j around each sphere of rank k � j − 1:

δV j �
4π
3

j−1∑
k=0

nk

[(
rk + 2γcr j

)3 − r3
k

]
. (11)

The inequality (11) is the key ingredient that allows one to write explicitly a sufficient condition
for the population (4) of spheres to be space-filling. This inequality is more precise than the
corresponding inequality written by LL in their work (the expression (3.4) in [15]) and it results
in a much better estimate of the lower bound Rj. Using (6), (9) and (11), the following lower
bound for ν j is obtained:

ν j �
3

4παv

1
r3

j
− 1

αv

j−1∑
k=0

nk

(
rk

r j
+ 2γc

)3

. (12)

It results in the sufficient condition (named: (CS1)):

The LL algorithm builds a space-filling packing of spheres with distribution (4)–(7) if the
inequality:

3
4π

1
n jr3

j
−

j−1∑
k=0

nk

n j

(
rk

r j
+ 2γc

)3

� αv, (13)

holds true for every value of j = 1, 2, . . . .

In (13), the parametersαv and γc depend only on the plesiohedron used in the LL algorithm.

4. Sufficient condition for a generic fractal sphere population

In this section we shall derive the sufficient condition on the exponent df , for the discrete
distribution of spheres (4)–(7) with:

nk = n0nk; rk =
r0

nk/df
, k = 0, 1, 2, . . . ,∞ (14)

such that these spheres are space-filling using the LL algorithm. This discrete distribution
writes as nk ∝ 1/rdf

k , similar to the continuous distribution (1) written as: n(r)dr = (1/rdf )dr/r.

8
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Indeed, from (14), the index k is proportional to the logarithm of the corresponding radius,
hence the term dr/r may be put aside in the continuous distribution.

There are four constant parameters in (14): n0 and n are two integer numbers such that n0 �
1 and n � 2, and two real parameters r0 and df such that 0 < r0 < 1/(25/6n1/3

0 ) and 2 � df < 3,
to be consistent with (5) and (7). We have also the rough but useful inequality: γcr0 < 1, which
comes from r0 < 1/2 (because the edge length of the cube is 1), and γc < 2.

We note first that, using the distribution (14), the space-filling condition (6) writes as the
equality:

4π
3

n0r3
0 = 1 − n1−3/df , (15)

from which the volume fraction of the system at rank j � 0, namely φ j =
∑

k=0,..., j nk4πr3
k/3,

is found to depend only on the two parameters n and df :

φ j = 1 − 1
n( j+1)(3/df−1)

. (16)

Since n � 2, φ j tends clearly to 1 when j →∞. This formula can also be written:

1 − φ j =

(
r j+1

r0

)3−df

, (17)

a popular formula for the porosity of fractal sphere-packing [36] (in theoretical physics) and
of concrete [37] (in applied physics).

4.1. The seed-particle radius r0

From the equality (15), the condition (5) gives an upper bound of the parameter n:

2 � n < 22df/(3−df), (18)

where we used for the sake of simplicity the inequality: 1 − π/
√

18 > 1/4.
Also from (15), one finds the value of r0 as a function of the three other parameters n0, n

and df :

r0 =

(
3

4πn0

(
1 − n1−3/df

))1/3

. (19)

4.2. The condition Rj/nj � 1

Using (14) and (19), the sufficient condition (13) is written:

f1 +
6γc

n j(1−2/df)
g2 +

12γ2
c

n j(1−1/df)
g1 +

8γ3
c

n j
g0 � αv, (20)

in which the four functions f1, g0, g1, g2, independent of the rank j, are given by:

f1 ≡
1

1 − n1−3/df
−
(

6γc

n1−2/df − 1
+

12γ2
c

n1−1/df − 1
+

8γ3
c

n − 1

)
, (21)

gm ≡ 1
n1−m/df − 1

, (22)

9
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and m = 0, 1, 2. Since all the functions gm are > 0, the relation (20) is fulfilled if the weaker
inequality (independent on the rank j): f1 > αv is realized.

4.3. Summarizing the sufficient condition

The corresponding sufficient condition (named: (CS2)) is written as:

The LL algorithm builds a perfect space-filling packing of spheres with the distribution
(14) if there is at least one integer number n ∈ [2, 22df/(3−df)) (the notation [α, b) denotes
the interval α � n < b), such that:

f1 ≡
1

1 − n1−3/df
−
(

6γc

n1−2/df − 1
+

12γ2
c

n1−1/df − 1
+

8γ3
c

n − 1

)
> αv. (23)

Once the inequality (23) is fulfilled for a value of n, we may select any integer number n0 such
that:

n0 >
6
π

(
1 − 1

n3/df−1

)
, (24)

which comes from the fact that r0 < 1/2 (no sphere can be larger than the edge length of the
box) and relation (15). At last, the value of r0 is given by (19) as a function of df , n and n0.

5. Explicit sufficient conditions for various space-filling polyhedra
approaching the derivation for spheres

5.1. The cube

The cube has parameters:

γc =
√

3; αv =
6
π

, (25)

hence the expression of the function f1:

f1 ≡
1

1 − n1−3/df
−
(

6
√

3
n1−2/df − 1

+
36

n1−1/df − 1
+

24
√

3
n − 1

)
. (26)

The function f1 is an increasing function of df for any fixed value of n > 2. The inequation
f1 � 6/π, with f1 given in (26) admits solutions in integer numbers n ∈ [2, 22df/(3−df)) for any
value of df in the range:

2.855 � df < 3. (27)

The evolution of f1 as a function of n is plotted in figure 3 for several relevant values of df .
The sufficient condition (27) is much wider than the set of discrete values df = 2 +

log p/log(p+ 1) (with p any integer � 26) derived in [15] and which are all included in the
range [2.9885, 3).

10
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Figure 3. Shape of the function f1 as given in (26) in the case of the cube as the ple-
siohedron used in the LL algorithm. Three values of the fractal dimension df are used
to exemplify the threshold of (23). The maximum of the function f1 increases regularly
with the value of df . For df > 2.855, the values of f1 are larger than αv = 6/π � 1.91
(the horizontal line) on some interval of n, making true the sufficient condition for the
sphere population (14) to be space-filling.

5.2. The rhombic dodecahedron

This polyhedron has parameters:

γc =
√

2; αv = 8. (28)

It is closer to the sphere in the sense that the value of γc is smaller than that of the cube. The
same analysis as before leads to the sufficient condition:

2.847 � df < 3, (29)

that is a slightly wider range than for the cube case.

5.3. The truncated octahedron

This polyhedron is more interesting than the previous one since its parameters:

γc =
√

5/3; αv = 8/π
√

3, (30)

show that its shape is much closer to the shape of a sphere (the ratio between the radius of the
circumscribed sphere and the one of the inscribed sphere is only 1.29). In this case, the same
analysis as before leads to the sufficient condition:

2.800 � df < 3. (31)

The stricter sufficient condition (CS1) allows the replacement of the lower threshold 2.800 by
2.798 in (29).

In short, using the sufficient condition (CS2) with, successively, the cube, the rhombic
dodecahedron and the truncated octahedron as the plesiohedra required in the LL algorithm,
we showed the following theorem:

11
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Figure 4. Solution (black curve) in df of the equation (33) versus the variable n. The
red dashed line is the special value df = 5/2. The asymptotic solution for n →∞ is
df � 5/(2 − log 6/log n) → 5/2. This figure shows that, for any given value of df , the
inequation (32) has solution in n only if df > 5/2.

• for any value of df in the range 2.8 � df < 3, it is possible to pack iteratively nk ∝ 1/rdf
k

spheres of radii in geometric progression rk ∝ ρk (with 0 < ρ < 2−1/3) in the unit 3D cubic
box. The packing is complete in the sense that the packing density equals 1 for k →∞.

5.4. A note about the best possible sufficient condition

The only parameters of the sufficient condition (23) are γc and αv of the plesiohedron used
in the LL algorithm. The more sphere-like is the plesiohedron, and the closer to 1 are these
two parameters, no matter how complicated the shape of the polyhedron. Even aperiodic space
tiling [38] can be used as well. So far, we have considered only three plesiohedra, with the trun-
cated octahedron having a shape relatively close to the sphere (this is the ‘Kelvin’s polyhedron’
[39]).

At this juncture, one wonders how much more the range of fractal dimensions given by (31)
could be expanded, if all possible plesiohedra (known or yet to be discovered) were consid-
ered in this gradual geometrical approach towards perfect sphericity. A partial answer may be
gleaned from the remark that the parameters γc > 1 andαv > 1 for any plesiohedron, with lim-
iting values = 1 for both parameters (these limit values are the respective values for the perfect
sphere). Let us then suppose that we know a sequence of different plesiohedra with decreasing
values of γc approaching 1. Such sequence could begin with:/cube (γc = 1.73)/rhombic dodec-
ahedron (γc = 1.35)/truncated octahedron (γc = 1.29)/. . .. Provided such a sequence exists,
the smallest value of df compatible with a space-filling sphere population (14) under the LL
algorithm, is given by the sufficient condition (23) written with γc = αv = 1:

1
1 − n1−3/df

−
(

6
n1−2/df − 1

+
12

n1−1/df − 1
+

8
n − 1

)
> 1. (32)

We first solve numerically the corresponding equation in df , with the variable n > 1:

1
1 − n1−3/df

−
(

6
n1−2/df − 1

+
12

n1−1/df − 1
+

8
n − 1

)
= 1. (33)
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Table 1. Parameters of a possible numerical simulation of sphere-packing using the
LL algorithm with truncated octahedron as the plesiohedron. The sphere population
is chosen with fractal dimension df = 2.875, n = 74 and n0 = 2. When the rank j of
the iteration increases, the total number, Ns, of spheres increases exponentially, while
the volume fraction φ j increases very smoothly. Numerical simulation of such sphere
packing is hardly conceivable beyond the rank j = 4 using this method.

j Ns r j φ j

0 2 0.2731 0.171
1 150 0.0611 0.312
2 11 102 0.0137 0.430
3 821 550 0.003 0.527
4 6.0 × 107 6.8 × 10−4 0.608
5 4.5 × 109 1.5 × 10−4 0.675
6 3.3 × 1011 3.4 × 10−5 0.730
. . . . . . . . . . . .
15 2.2 × 1028 4.8 × 10−11 0.950
. . . . . . . . . . . .

For any value of n, there is only one solution of (33), which is shown in the figure 4. Moreover,
when n 
 1, the two first terms of (33) are dominant, and the equation leads to:

n2−5/df � 6 (34)

that is: df � 5/(2 − log 6/log n) which tends to 5/2 when n →∞.
There is no acceptable solution corresponding to df � 5/2. The more general sufficient

condition (CS1) leads to the same conclusion since the left-hand term of (13), calculated for
df = 5/2, grows from a negative value for n = 2, to the value 1− (as 1–5/n1/5 when n →∞)
for any value of j.

We conclude that, using the algorithm LL, the range of values of df sufficient for the packing
of spheres (14) to be space-filling is always included in the interval:

5/2 < df < 3.

An interesting remark here is that the Apollonian fractal dimension dApo
f � 2.4739 ±

0.0010 being smaller than 2.5, the Apollonian sphere-packing cannot be a population (14)
packed using the LL algorithm, whatever the plesiohedron we use in this algorithm. In
section 6, we will examine more closely the difference between packings resulting from LL
and from Apollonian constructions.

5.5. Conceivable improvements of the theorem

As discussed in section 5.4, the theorem derived in section 5.3 can be straightforwardly
improved using space-filling polyhedra ‘rounder’ than the truncated octahedron adhering to
the sufficient condition (23). These polyhedra remain to be found, and their values of αv and
γc can then be calculated to see how the range of acceptable df is affected.

A more complicated improvement might result from finding a better lower bound R j of the
coefficients ν j, following the reasoning detailed in section 3.3. This would require an analysis
of the shapes of the voids left in the intermediary sphere packings, more carefully than the
simple calculation presented in section 3.3. This approach could probably be effective, but
requires much work.

13



J. Phys. A: Math. Theor. 54 (2021) 195201 R Botet et al

Figure 5. Cut-through of a rank 3 sphere-packing obtained using the LL algorithm
with truncated octahedra as the generic plesiohedron. The parameters are: df = 2.875,
n = 74, n0 = 2. Colours correspond to the sizes of the spheres (that is: r0 = 0.273 (blue),
r1 = 0.061 (green), r2 = 0.014 (yellow), r3 = 0.003 (red)). The figure shown represents
10% of the unit cube. Since it is a 2D projection of a 3D arrangement of spheres, this
image is not as informative as the 2D model shown in figure 2. However, one can see
clearly the underlying regular truncated-octahedra honeycomb used by the LL algorithm,
despite the random selection of the sphere locations amongst the available sites at each
iteration.

Another improvement consistent with the LL algorithm would include tessellation of space
with two (or more) different sorts of polyhedra [40]. This would change the formula appearing
in the sufficient condition (CS1), involving then two (or more) values of γc and αv. That way,
two (or more) sphere radii in fixed ratios between them would have to be considered at each
rank of the LL algorithm iteration.

6. A numerical example

In this section, we propose using the LL algorithm to build numerically the first stages of
a sphere packing in the cube of edge-length L = 1 with periodic boundary conditions. The
fractal dimension df = 2.875 > 2.8 is selected, and we use the truncated octahedron in the
algorithm.

The inequation (23) solves as:

74 � n � 2.21011. (35)

Selecting the value n = 74 and the number n0 = 2 of initial spheres, we give in table 1 the
characteristics of the numerical simulation compatible with the parameters deduced from the
sufficient condition (23).

We performed a numerical simulation up to j = 3 (number total of spheres: Ns = 821 550)
using the LL algorithm starting from 2 randomly-placed spheres of radius r0 = 0.2731 in the

14
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Figure 6. (a) Dotted black curve: structure factor of the packing of spheres shown in
figure 5, built using the LL algorithm up to third rank (system of 821 550 spheres
averaged over space orientations). The restricted Bragg peaks are due to the limited
crystallite sets inherent to the LL algorithm. The unit of the variable q is determined
by the choice of the unit length (the edge of the cube), and the range of S(q) values if
chosen for the first Bragg peak be shown in full. Red curve: structure factor of an Apollo-
nian packing (system of 800 000 spheres averaged over space orientations), as discussed
in [17]. Bragg peaks are absent from the Apollonian packing structure factor; (b) magni-
fication of the values of the structure factors shown in figure (a). Dotted black curve: LL
sphere packing; red curve: Apollonian sphere packing. The structure factor of a pack-
ing structure obtained using Manna’s algorithm is shown for comparison (blue curve;
system of 800 000 spheres averaged over space orientations). No Bragg peak is seen
either in the Apollonian packing or in the Manna packing structure factor. On the other
hand, Manna packing is seen to be much less correlated (no peak visible) than Apol-
lonian packing (shallow peaks), due to the release of the extremality condition of the
Apollonian algorithm (namely: every particle to add tries to fill the largest void in the
structure).
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unit cube. At every rank k = 1, 2, 3, the selection of the nk truncated octahedra among the νk, is
performed randomly. Visualization of a small part of the packing showing the particles of ranks
0, 1, 2 and 3 is shown in figure 5, and the successive regular lattices, on which the truncated
octahedra are lying, are quite visible on it.

A similar conclusion about the spurious evidence of local lattices of plesiohedra in the LL
algorithm case can be drawn from the analysis of the sphere-packing in the reciprocal space.
The reciprocal space is the natural framework to analyze the Small-Angle X-ray Scattering
data from systems of particles. In this space, the natural coordinate frame is represented by
the scattering wave vector coordinate q = (2π/λ)(usca − uinc), in which λ is the wavelength
of the scattered X-ray, and uinc, usca are the unit vectors in the incident and scattered directions
respectively. The static structure factor [41]:

S(q) =
∑

i, j

f i f j eiq(ri−r j)/
∑

i

f 2
i , (36)

of an ensemble of spheres (the centre of the sphere labelled i is located at ri, and its form
factor is f i) is a measured quantity which includes most of the information about the spatial
arrangement of the spheres in the system. The structure factor depends only on the modulus
q = 4π/λ sin (θ/2), in which θ is the scattering angle, when spherical symmetry applies.

In the case of the LL algorithm packing of spheres, the structure factor function remains
close to the value 1, except a number of strong fine peaks reminiscent of Bragg peaks com-
ing from the bcc symmetry of the tessellation of space by truncated octahedra (see dotted
black curves in figure 6). The LL structure factor is quite different from the structure factor
of an Apollonian packing (red curves) and from the structure factor of a Manna packing (blue
curve on figure 6(b)). This result confirms our conjecture that the osculatory algorithms are
different in essence from the LL algorithm, regardless of the value of the fractal dimension
(df � 2.47 for the Apollonian packing; df � 2.73 for the Manna packing).

7. Conclusion

In the present work, we extended a theorem from LL to derive a wide range of values of the
exponent df for which a population of spheres with continuous radius-distribution∼ 1/rdf+1 is
space-filling. The method can probably be improved and hints are given in the text. Although
the basis of the LL algorithm does not allow for the inclusion of all possible space-filling pop-
ulations of spheres—as evidenced by the comparison with Apollonian packing—the extended
LL theorem nevertheless grants access to a much larger set of sphere populations, previously
unknown or unexplored.

Physical properties of extremely dense sphere packings, as generated by the LL algorithm
or by the Apollonian osculatory algorithm, remain to be discovered. However, unusual prop-
erties can be expected if one refers to the case of the Menger sponges since both sorts of
systems share basic features (e.g. extreme density, extreme surface, self-similar spatial dis-
tribution of matter, etc). Indeed, Menger sponges are known for the spectacular—and still
unexplained—localization of electromagnetic waves [42] or strongly anomalous thermal dif-
fusion [43]. But unlike the Menger cubes—which are artificial structures—, extremely dense
sphere packings appear naturally as high internal-phase-ratio emulsions [8, 17]. For studies and
applications involving physical properties of extreme sphere-packing, the role of the exponent
df is probably of utmost importance and we may now begin to understand how the value of df

is related to the building process.
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