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ABSTRACT

Measuring the structure factor, S(q), of a dispersion of particles by Small-Angle X-ray Scattering
provides a unique method to investigate the spatial arrangement of colloidal particles. However,
it is impossible to find the exact location of the particles from S(g) because some information is
inherently lacking in the SAXS signal. The two standard ways to analyse an experimental structure
factor are then to compare it either to structure factors computed from simulated systems, or to
analytical structure factors calculated from approximated systems. For liquids of monodisperse
hard spheres, the latter method provides analytical structure factors through the Ornstein-Zernike
equation used with the Percus-Yevick closure equation. The structure factors obtained in this way
were not adequate for the more common dispersions of polydisperse particles. However, Vrij, Bloom
and Stell were able to demonstrate that the same mathematical framework could be extended to
yield accurate approximations for the experimental structure factor. Still, this solution has remained
underused because of its mathematical complexity. In the present work, we derive and report the
complete Percus-Yevick solution for general polydisperse hard-spheres systems in a concise form
that is straightforward to use. The form of the solution is made simple enough to give ready solutions
of several important particle-radius distributions (Schulz, truncated normal and inverse Gaussian).
We also discuss in detail the case of the power-law radius distribution, relevant in the case of systems
made of an Apollonian packing of spheres, as recently discovered experimentally in high internal
phase ratio emulsions.

1 Introduction

Small-Angle Scattering (SAXS for X-rays, SANS for neutrons) (Fejgin, 1987) is a powerful method to deduce struc-
tural information of materials (liquid or solid) in the range of distances 10-1000 A (Guinier, 1939). This makes
it a unique tool to study spatial organization of matter prepared for example, by dispersing fine particles (nano- or
micrometer sized) in a liquid (Porod, 1951).

In order to determine the particles’ arrangement in such a material, we need to know the distance distribution functions
for each type of pair of particles. This is generally a formidable problem, because the particles are not all identical, and
also because intra-particle and inter-particle distances are confounded. As a result, the amount of information required
to describe precisely the spatial structure far exceeds that available in the experimental data. There are several ways to
deal with this problem:
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e change the contrasts of the particles without changing their positions, e.g. substituting H atoms with D atoms
in SANS (Williams et al, 1979; Williams, 1991), or varying the wavelength of X-rays near the absorption edge
of suitable atoms in SAXS (Stuhrmann, 1985). These contrast variation techniques can provide a rigorous
separation of intra-particle and inter-particle distances, but are infrequently practised due to the experimental
difficulty in ensuring structurally identical samples which scatter differently.

e create a model that takes into account the distribution of particle sizes and shapes and use this model to predict
the pair-distance distributions at equilibrium (Franke et al, 2017). This approach is feasible in cases where a
sample is infinitely dilute, or if the particles are identical. However this is not generally the case because of
the unknown interactions between particles of different sizes and shapes.

Half a century ago, Baxter’s solution to the Percus-Yevick equation in the case of an infinite number of hard-sphere
species (Baxter, 1968; Baxter, 1970) suggested a way to solve the Ornstein-Zernike equation in this situation within
the frame of the Percus-Yevick approximation (Percus & Yevick, 1958). It was done for a system made of uncharged
polydispersed hard spheres (Vrij, 1979; Blumé& Stell, 1979), and in particular for a distribution of diameters that
matched the Schulz distribution (Vrij, 1978). This provides a complete mean-field solution for the structural problem
at least for this particular case of a population of uncharged hard spheres (van Beurten & Vrij, 1981; Griffith et al,
1986;Griffith et al, 1987). Several authors have since extended Vrij’s solution to similar cases where a mean-field
solution can be postulated (e.g. soft spheres (Blum & Stell, 1979) or adhesive hard spheres (Robertus et al, 1989). All
these solutions to the decomposition problem can be expected to be as good as the mean-field descriptions of phase
transitions, which appear to be rather apt descriptors. Nevetheless, most users of small angle scattering have been
deterred by the complexity of the Vrij solution, and many have preferred to use an oversimplified solution such as
assuming an infinitely dilute sample, an assumption that is not strictly correct in small-angle scattering. Many other
users have belittled the effects of polydispersity in systems that show fractionated crystallization, even though it is
known that complex crystal structures are not incompatible with high polydispersity (Cabane et al, 2016).

We first show that the Vrij solution can be expressed in a form which is mathematically simpler than the expressions
known to date. We provide a few examples for the effects of intra- and interparticle interferences on the scattering
patterns of moderately dilute dispersions, and compare these effects with those predicted according to other approx-
imations. Finally we show that the intra- and interparticle correlations of very polydisperse hard-sphere systems can
be predicted with great accuracy thanks to the use of Babinet’s principle.

From these examples, it becomes clear that the effects of polydispersity (size or interaction) are extremely important
in systems where packing tends to be a serious constraint, for instance, in highly concentrated emulsions. We believe
that our simplified solution will greatly assist other researchers in deriving a much easier spatial interpretation of
complicated real-life systems from their convoluted scattering data measured in the reciprocal space.

2 Simple form of S(q) for polydisperse system in the PY-approximation

According to Vrij’s work (Vrij, 1979; van Beurten & Vrij, 1981), the structure factor S(g) of a dispersion of neutral
spherical particles with distribution of radii n(a) can be calculated within the PY hard-sphere theory and expressed
as a combination of a finite set of functions averaged over the distribution of radii. However, the formalism through
which these functions are expressed is quite complicated, and this has strongly limited its usage.

In the present Section, we propose much simpler formulae in a concise form, and a few comments on the equations.
The details of the mathematical calculations bridging the present results to previous works are found in Appendix A.

The system being polydisperse, one has first to introduce the averaging process, <> over the particle radius

distribution n(a). There are various possible definitions, and we consider in the present work the conventional notation
(written respectively for a continuous and for a discrete radius distribution function):

<f(qa)> E/OOO f(qa)n(a)da, ()
(£(a0)) =3 f(gaa) n(aa) - @)

Within the PY approximation, the structure factor of a dispersion of hard spheres with volume fraction ¢ is written
under the form (full details in Appendix A):

Y/c

S(Q)ZW’

3)
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with the expressions for X and Y':

2efg +d(f* — g%)

X=1+b+ yea , (4)
v oy 29— elf? g% 5)
d? + e? ’
and the auxiliary quantities:
= % (6)
- ((cos(ga) + ga sin(qa) (sin(ga) — gacos(qa))) o
<(qa)3> ’
- <(sin(qa) —qa cos(qa))2> ®)
<(qa)3> 7
P ((ga)?sin(qa) cos(qa) ) o
- <(qa)3> ’
Lo a) a0
<(qa)3>
. <qasm<qa><si<n(<§:)>3> qa cos(qa>>>, -
<qa cos(qa)(sin(ga) — qa cos(qa))> .

e ()

In the equations above, the radius distribution n(a) does not need to be normalized since S(¢) finally depends on
ratios of average functions of ga. The only mathematical condition allowing the solution’s expression under the form

of ll is the finiteness of the moments <ak> for k = 0,1, 2, 3 (a condition that we henceforth suppose fulfilled).

An equivalent form — of easier use in some cases — involving functions of complex variables for the calculation of
S(q) is given in Appendix A, formulae (94)-(101).

Practically, to calculate the value of the structure factor S(q), one starts by calculating the seven averaged expressions
required to compute the functions b, ¢, d, e, f, g of qga, that is: <a3> and <ak sin 2qa>, <ak cos 2qa> fork =0,1,2.

These averaged functions can be written in closed form in a number of cases. Then, one uses these functions in @)-(3)
to write the auxiliary functions X and Y, and includes them at last in the expression (3)) of the structure factor.

An advantage of the expressions written above to calculate S(g) is that all the averages are linear functions of the
radius distribution. Therefore, if the studied distribution is (e.g.) bimodal and represented by the sum of two known
unimodal distributions, n(a) = nj(a) + na(a), any average parameter is the corresponding sums of the averages for
each distribution n; and ns.

The expressions (3)-(3) for the structure factor, and the relations giving the auxiliary functions b, ¢, d, e, f and g,
are valid for any system of non-overlapping spheres within the PY hard-sphere model. Several comments about the
formulae are noteworthy at this stage:

e itis a simple exercise to rediscover the standard Percus-Yevick formula for the monodisperse case (Kinning &

Thomas, 1984) after removing the average symbols < e > in the formulae above. In this sense, the equations
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(@)-(12) are nothing but a complicated way to write the popular monodisperse hard-sphere Percus-Yevick
solution in terms of trigonometric functions and powers of qa.

e for any finite value of ¢, the auxiliary parameters for ¢ — oo are such that: d ~ 1, ¢,e,g ~ 1/q and b, f
behave as ~ 1/¢?, hence the known result: lim,_,~, S(¢) = 1. We can be more precise about that limit.

Using the asymptotic expansions of fooo cos(gqa)n(a)da and of fooo sin(ga)n(a)da found by Olver (Olver,
1974), one finds from the above relations:

K
S(q)~1+q—2 , forqg — o0, (13)

wng?; 142 <a2>2 . (14)

? (a){w)

In particular we deduce from that the limit value 1 is always approached from above (since K > 0),
with behaviour ~ 1/¢? whatever the radius distribution. When the Percus-Yevick approximation is valid in
a certain experimental situation, the relations (I3)-(I4) can then be used as the best fit of the corresponding
experimental S(q) profile at large ¢, and find at the same time an estimation of the combination of
moments of the radius distribution.

o for any radius distribution, one recovers the trivial result limy_,o S(g) = 1 (the case of no scattering). More
precisely, the structure factor approximates at the first order in ¢, as:

1

R e

forop < 1. (15)

An explicit example is discussed in the following Section

Before delving into the discussion of any particular case, let us mention here that the complete analytical forms of the
auxiliary quantities (7)-(12) are given explicitly below:

o for the Schulz radius distribution: expressions after Equ.(3 1))

e for the truncated normal distribution: expressions after Equ.(39)

e for the inverse Gaussian distribution: expressions after Equ.(#1)

e for the power-law distribution: expressions after Equ.(@3)

Other radius distributions lead to analytical expressions of b, ¢, d, e, f, g. We leave it to the interested reader to calculate
these expressions for other cases (e.g. the uniform distribution).

3 A basic example: spheres with exponential radius-distribution

To exemplify the formulae above, we discuss in this Section a simple, though non-trivial, radius distribution of spheres,
namely the exponential distribution:

n(a) « e_a/<a> , (16)

of average radius <a>. It is a decreasing function of the radius a over the entire range 0 < a < oo, and its polydisper-
sity (i.e. the ratio between standard deviation and average value) is: p = 1, that is quite a wide distribution. Its value
for a — 0 is finite, while its tail (for a — 00) is exponential.

The exponential distribution (I6) is mathematically simple and is particularly relevant in a number of applications,
e.g. colloidal aggregates in a viscous fluid (Bastea, 2006).
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3.1 The analytical PY solution for the exponential radius distribution

We use below the solution involving real-valued functions as written in the Section [2] Using the scaled variable

T = 2q<a>, the six auxiliary functions b, ¢, d, e, f, g are as follows:

= )
C_li)qﬁx?’(f:;i?ﬂ 1o
d:1+lf¢m, (19)
et ST 20)
f_li)qﬁxQ(f:;?)B’ @D
; ¢ =2+ 32+t 22

T1-6" (1+a23B

and they are all ratio of simple polynomials in x. The relations (@)-(5) and consequently (3)) being rational functions
of b,¢,d, e, f, g, we obtain a simple formula for S(q), namely:

(1 4+ 22)2 Py(2?)
54122 Qq(22)’

in which P, is a quadratic polynomial of its argument, Z = 22, and Q4 a quartic polynomial, both with coefficients
depending only on the value of ¢ namely:

Py(Z) =5+ 4¢* +2(3 — 56 + 3¢°)Z + (1 — ¢)* 27,
Q1(Z) = (1+2¢)* + 4(1 + 5¢*) Z+
+2(3 — 8¢ + 9¢% — 2¢°) 2%+
+4(1 - ¢)*Z% + (1 — ¢)*Z* . (24)

All the coefficients of P, and ()4 are positive for any value of the volume fraction, 0 < ¢ < 1. The asymptotic
behaviour of S(g) given by (23)-(24) for the large values of z is consistent with the formulae (13)-(14), that is:

(q<a>)2 (S(g) —1) ~ ﬁ Jfor z — o0 (25)

with the constant in the right-hand side of (25) related to moments of the radius distribution through the expression

(14).

S(q) =(1—¢)° (23)

Although we are mainly interested in the present work in dense polydisperse systems, we note here the particular case
of small values of ¢ for which the PY approximation is expected to be correct. One finds from (23)), or using the

approximation (I3)):

1
S(q) ~ T when ¢ < 1, (26)
L+ 20 o

which ensures that S(g) = 1 for ¢ = 0, as it must be. The difference between the approximation and the formula
is less than 5% when ¢ < 0.1. An interesting behaviour of (26) is that, for this exponential radius distribution,

the peak of S(q) is asymptotically located at q<a> = /7/2 ~ 1.32 for ¢ — 0, while the corresponding peak height
behaves as Spax = 1 + ¢/8.
This behaviour and these values can be compared to what happens to a system of monodisperse hard spheres of

common radius <a>, at small volume fraction ¢, in the PY approximation. Indeed, in the monodisperse case, the
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location of the first peak of S(g) is such that: q<a> ~ 2.882 (that is the smallest positive root of the equation

tan(2z) = 6z/(3 — 422)), when ¢ — 0, while the corresponding peak height is: Spa =~ 1 + ¢/1.45, that is much
larger than the polydisperse case. Incidentally, this is a sign that spatial correlations are stronger in the monodisperse
than in the polydisperse case, even in the low-¢ domain.

3.2 Comparison of the PY solution with numerical simulations of systems of hard spheres with exponential
radius distribution

In this Section, we compare the PY polydisperse structure factor with structure factors obtained from simulated sys-
tems in order to specify the range of practical use of the approximation. Then, we introduce the Complementary
Percus-Yevick hard-spheres approach to calculate approximately the structure factor of dense systems through Babi-
net’s principle.

3.2.1 Comparison with numerical simulations of random dispersions of spheres

The PY approximation supposes the same local radius distribution around each particle regardless of its size (Greene
et al, 2016). This is a mean-field approximation. Sticking to this constraint, we used Monte-Carlo simulation in the
semi-grand canonical ensemble (Briano & Glandt, 1984), putting randomly, in a cubic box with periodic boundary
conditions, N non-overlapping spheres selected with radii following the exponential distribution (I6). That way, we
enforce particle size and position to be essentially uncorrelated (except volume exclusion), since the next particle to
add is sensitive to the remaining void geometries and not directly to the particles surrounding the voids. Using these
rules, we generated a number of independent systems comprising N = 25000 exponentially distributed spheres at
controlled volume fraction ¢. Using this algorithm, the maximum attainable volume fraction is ~ 0.69.

An example of such a system is presented in FIG]T]

In FIG. @ we show the structure factors, both numerical (red circles) and analytical (black continuous curves), in the
cases: ¢ = 0.25, ¢ = 0.50 and ¢ = 0.69.

Agreement between the structure factor functions from the simulated systems and the corresponding analytical solu-
tions from the PY approach is almost perfect up to ¢ = 0.5. Beyond this value, the numerical peak height decreases
with the volume fraction, while the analytical peak continues to grow. This discrepancy beyond ¢ ~ 0.5 may be in-
terpreted as specific spatial correlations and sizes correlations which are presumed in the PY approximation, whereas
these presumptions are not present in the random-addition numerical simulations.

3.2.2 the Complementary Percus-Yevick hard-sphere approach for dense sphere packings

The discrepancy above can be roughly explained by the swapping of roles between matter and voids: when ¢ > 0.50,
the dense system of packed spheres may be considered as a population of voids inside a homogeneous medium. A
pore is here defined as an interstice between neighbouring spheres. Each pore is an assembly of spherical triangles,
possibly connected to other pores by necks not wider than a threshold (e.g. the minimal sphere radius). Because
of Babinet’s principle, the definite structure factor is reduced to the X-ray scattering by an ensemble of small void
domains in homogeneous matter (Guinier et al, 1955).

To be more precise, although the shapes of the voids are generally complicated, we know exactly the average size of
the voids. Indeed, if v and s denote respectively the volume and the surface of a given void, the following general (i.e.
valid for any radius distribution) equations relate the total surface, .S, of the interface between void and matter, and the
volume fraction, ¢, of matter:

in which N,, (resp. N;) is the total number of voids (resp. spheres) in the volume V, and < ‘e > denotes the average
value for the ensemble of the voids. One can then eliminate Ny, N, and the volume V' from tﬁ)e equations above to

deduce the relation between the typical sizes of the voids and the typical sizes of the spheres:

(), _1{e")

(o), ()

(29)



Percus-Yevick structure factors made simple A PREPRINT

Let us define the effective radius, aef, of the void of volume v, by the relation: v = 47m§’ff /3 (this means that the form
factor of the void is replaced by the form factor of a sphere of same volume). The probability distribution of the a.s
is not known, but the voids are essentially uncorrelated (Brownlee, 1965), then we can invoke a theorem stating that
the maximum entropy probability distribution for a positive random variate with fixed average value is the exponential
distribution (Park & Bera, 2009). Then, we assume that the void effective radii are distributed exponentially, with:

1-g()
<aeff> =— . (30)

v (,b < a2 >
The last step is to suppose that the Percus-Yevick theory is valid for the ensemble of the voids, that is to say: the
voids behave as an ideal gas with a pair distribution function which vanishes for distance < a.¢. Then, we can use
the formula (23)) to obtain the structure factor of the system, in which one replaces the matter volume fraction ¢ by

the complementary void volume fraction 1 — ¢. We call this method the Complementary Percus-Yevick hard-sphere
approach.

This approximation results in the structure factor shown as the dashed blue curve in FIG. [2|for the case of ¢ = 0.69.
This structure factor, obtained from X-ray scattering by a dilute population of voids with an exponential distribution of
their effective radius, is much closer to the structure factor obtained from the simulated systems than the Percus-Yevick
solution for scattering by ¢ = 0.69 of matter.

The complementary PY approach is expected to be general for dense dispersions of uncharged hard spheres, leading to
accurate estimations of the analytical structure factors when volume fraction is so large that voids are well represented
as small isolated and uncorrelated scattering domains randomly dispersed in homogeneous matter. Using such an
approach, the agreement between the simulated and analytical data is much better (quantitatively better than 3%), as
seen in FIG.[3

4 Exact analytical S(¢) for some radius distributions within the PY approximation

S(q)’s calculation is essentially reduced to determining the averaged auxiliary functions b, ¢, d, e, f, g defined after
(3)-(). Then, the expression of the structure factor in the PY approximation is analytical as soon as the averages

a*ei@ ) of the radius distribution n(a) are known in closed forms for k& = 0, 1,2, 3. Hereafter is a limited list of

standard (and useful) 2-parameters continuous distributions for which the structure factor is calculated exactly. These
full formulae can be used, for example, to fit shapes of experimental structure factors resulting from SAXS analysis of
polydisperse sphere dispersions.

o the Schulz distribution

n(a) o< a®~tes/ (@) | (3D

with s > 0, <a> > 0, and the radius, a, takes real positive values. The S(g) for this distribution was already

given in (van Beurten & Vrij, 1981; Griffith et al, 1986; Griffith et al, 1987), and we present a much simpler
form below.

The parameter s is related to the polydispersity of the distribution, p, through:

pzﬁ. (32)

The behaviour of the distribution near a — 0 is a power law, either decreasing (~ 1/a'~%) when s < 1, or
increasing (~ a®~!) when s > 1. The Schulz distribution belongs to the exponential family, i.e. the tail of the
distribution follows ~ exp(—a). The pure exponential distribution detailed in the previous section represents
the case where s = 1.

The structure factor S(q) can be written explicitly in terms of functions of the reduced variable:

). o

S

X

~
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Some combinations of variables appear naturally in the final expressions of S(g) in this case. These are the
two trigonometric quantities:

_cos((s + 2) arctan(z))
P=— 7 (34)
__sin((s + 2) arctan(x))
5= o (35)
and three simpler quantities:
__ ¥
g1 = G2z’ (36)
_ 2y
P2 =5+ D) (s +2)22” 37)
4
g3 = Ld (38)

s(s+1)(s+2)x3’

with the parameter ¢ given by (6). Using I', X, g1, g2, g3, the auxiliary quantities b, ¢, d, e, f and g are written
exactly as:

s+4 s+ 2
b= (93— S 91)2—2 5 g2l

s+4 s+2
c= 91+93—(93— 5 91)F—2 5 g2%

d: 1+912,
e= g1—ql,

s+ 3

f g2 — g2 S+191 ,
s+ 3
pu— -_ E F-
g 91— 92 +S+191

The corresponding structure factor S(q) for the Schulz distribution is calculated using (E])- then .

Note: when s is an integer number, I" and X are ratios of polynomials in z. Because of (3)-(3), the structure

factor expresses in this case as the ratio of two polynomials of degree 2 + 3s in x2.

e the truncated normal distribution

(a — (a))?

n(a) e 2P%(@)? | (39)

with <a> > 0, and p is the polydispersity of the distribution. The values of the radius a must be restricted to
the positive axis (hence the “truncation” of the full distribution).

The value of the distribution near a = 0 is finite positive, while the tail is Gaussian: ~ exp(—a?).
Analytical calculation of the auxiliary quantities b, ¢, d, e, f, g, requires consideration of unphysical neg-
ative values of particle radii a. The relative amount of these radii is the complementary error function
Erfc(1/py/2)/2 that we have to add to the truncated probability distribution. A rough estimation of the
accuracy of the expressions below is given by the argument that for p < 43%, Erfc( ) amounts to less than
1%. This will be also the precision for S(q) calculated by the current approach, provided the polydispersity
pis restricted to: 0 < p < 0.43. Within these conditions, using the scaled variable:

z= 2q<a> , (40)
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the auxiliary functions I' and ¥ defined as:

3¢ 2,2
I'= _e TP E/2
(1+3p2)(1 - ¢)a o
Y= 3¢ e P* /2 gin o ,

(1+3p*)(1 = ¢)a®

and the three simpler quantities:

g = (LR
(14 3p?)x”’
_ 2¢
9= (T am
_ 49
B At

Using I', ¥, g1, g2, g3, the auxiliary quantities b, ¢, d, e, f and g write:

b= ((2+p*2?)? —2%(1 +p?))% — 22(2 + p?22)T,

c= g1+gs—2x(2+p*?)E — (2 +p%2?)? —2*(1+p°))T,
d= 1421+ p? —p*2?)¥ + 2p%2°T,

e=g1+2p°2®% — (1+p® — p'a?)2®T,

F= g 2014 PR 21— g2~ pha)S,

g= g +2*(1—-p*—p'a®)l —2z(1 +p*2?)%.

As usual, the corresponding structure factor S(q) for the truncated normal distribution is calculated using

@)@

In the case where the polydispersity p > 43% (that is the case where integration over positive radius should
not be replaced by integration over the whole real axis), the respective formulas are more complicated, though
still analytical, provided that the auxiliary quantities I" and X are expressed in terms of the two complementary
error functions Erfc[(1/p & ip x)/+/2]. The full expressions are not given here, but they are easy to obtain.

o the inverse Gaussian distribution:

(a—(a))

n(a) #67 2p*(a)a , 41

with <a> > 0, and p is the polydispersity of the distribution. The radius a takes real positive values.

The distribution belongs to the exponential family, and it goes sharply to 0 (~ exp(—1/a)) for a — 0.
In the context of the colloids, it is not as well-known as the Schulz and the normal distributions, though
one can foresee generic conditions where the inverse Gaussian distribution may appear. Indeed, from the
works of Schrodinger and Smoluchowski (Schrodinger, 1915; von Smoluchowski, 1915), we know that this
distribution characterizes the time for a particle undergoing Brownian motion with a drift, to cover a given
distance along a line. One has then to think of a population of such particles growing at a constant rate in a
limited space domain, to obtain an inverse Gaussian size distribution. For example, it could be the case of
micrometric particles sedimenting in a dispersion of tiny nanometric particles and accreting them (Alexandrov
& Lacis, 2000). In a different context, the inverse Gaussian distribution has been used to describe the cell
size distribution of phytoplankton population (Bernard et al, 2007).

The exact solution, in this case, is much simpler when expressed in terms of functions of complex-valued
variables, rather than using the real-valued quantities b, ¢, d, e, f,g. We use the formulae written in (98)-
(in Appendix 1) to calculate the expressions for u1, po, p3 defined below.
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Firstly, we introduce the auxiliary quantity po:

Lo = 1 6(17\/1747,'301)2)/1)2

1 — 4izp?

)
in which the reduced variable, z, is:

T = q<a> . 42)

One then obtains:

[1+ 1—|—p

2 — 9ixp?
1 —4dixp? — 2 —zme)},

V1 — dizp?
i P

- T4p?—po (14—,

H2 =y Ho /1 — dizp?

T 1 — 5izp?
_7(14—23:( +p?) + po iz — P )

V1 — dizp?

/\I\D\ﬂ

M3

[\

while the moment v3 = <(qa)3> is

vy = (1+ 3p* + 3p*) 2®

Then, the relations (95)-(97) allows the calculation of the expressions of f11, fi2, f22, and the static structure
factor S(q) of the inverse Gaussian distribution population of spherical particles is obtainable from (94).

5 Comparing S(q) for the three previous cases to their analytical PY solutions

FIG. [ presents an example of the static structure factors S(g) at the volume fraction ¢ = 0.5 for the three distributions
above. The distributions are all of the same mode, centered on 1, with the same standard deviation, o = 1/2.

Although the three S(q) behave in a very similar way because of their common parameters, one may nonetheless notice
minute differences: 1) Schulz and truncated normal distributions give about the same Syax (=~ 1.20 in this case), while
the peak is slightly higher (~ 1.24) for the inverse Gaussian distribution as a result of its sharper small-z cut-off ;
2) the shape of the structure factor after the main peak decreases more slowly for the truncated normal distribution
(Gaussian large-z tail) than for the two other distributions (exponential large-z tails).

Fig shows structure factors of numerical systems made of N = 106 particles at ¢ = 0.50 for the three distributions
reported in Figl] Their shapes are very similar to the analytical PY solutions, except that the PY-approximation
leads to an overestimation by a few percent of the numerical Sy,,x. The overestimation is similarly present and well-
documented for monodisperse hard-sphere systems at high concentrations (Frenkel et al, 1986; Hansen & McDonald,
2006).

6 Exact S(g) in the PY approximation for an Apollonian packing of spheres

A very different kind of radius distribution appears in the problem of filling space totally with non-overlapping spher-
ical particles. Such a packing requires using a population of spheres with power-law radius distribution (Stumpf &
Mason, 2012):

n(a) = 1/a® T (43)

with the exponent: 2 < dy < 3 (Kinzel & Reents, 1998). The most popular example of the distribution is the
Apollonian packing (Mandelbrot, 1983) (for which d; ~ 2.47 (Borkovec et al, 1994), an iterative process in which
the largest possible sphere is placed into the largest void left in the packing. Other space-filling sphere packings are
known with larger values of d; (Lieb & Lebowitz, 1972). The distribution @ is also found in other contexts, for
example, the size distribution of natural aerosols, and the distribution is then often called the Junge distribution (Junge,
1955).

10



Percus-Yevick structure factors made simple A PREPRINT

In all practical applications — experimental or numerical — the values of the particle radius are confined between two
limits (Varrato & Foffi, 2011), amin and amax. Mathematically, these two limits ensure that the moments of orders
0,---,3 of n(a) exist and are finite. Experimentally, these two limits depend on the conditions in which the system is
constructed. The non-dimensional parameter p = dmin/amax plays a central role in the theory. In particular, the smaller
the value of p, the denser the sphere packing. This relation can be formalized via the asymptotic (p < 1) expression
of the porosity (Varrato & Foffi, 2011):

1—¢=Cp* ", (44)

in which ¢ is the actual volume fraction of the packing, and dy the exponent of the power law . The positive
coefficient C' may depend on the value of d¢. The value C' ~ 0.85 holds for a random Apollonian packing.

Distribution (43) is written here under an unnormalized form, and we shall use this form in the following demon-
strations. Indeed, as explained in the Section [2] the average quantities appearing in the definitions of the auxiliary
functions b, ¢, d, e, f, g, do not require normalization of the radius distribution.

The expressions (7)-(12) to calculate the auxiliary quantities b,c,d, e, f,g all depend on the quantity 3¢/((1 —

#){ (ga)®)) which deserves some preliminary attention in the present case. Indeed, using the power-law distribu-

d 1 _ 3—df

3\ _ G 3 4 p

<a>—3_dfamaxp (l_pdf ) , 43)
in which the quantity in parenthesis is very close to 1 when p < 1 since df < 3. Using and @ one deduces
that:

tion (43)), one obtains the relation:

3¢ (qamin)3 ~ 3 — df %

; (46)
1_¢<(qa)3> i C
which is a positive constant (~ 0.75 for the random Apollonian packing) independent of q.
For the general power-law distribution, we use below the reduced variable:
2(dy —1
v = 20y ~ 2 o0, (47)
!
and consider the situation where p < 1.
The functions b, ¢, d, e, f, g express in terms of the two auxiliary functions Z and J defined as:
I(x) =si(2 —dy,x), (48)
1 .
j(x):chl(2fdf,I), (49)
in which the two generalized sine and cosine integrals si and ci are (Olver et al, 2010):
o0 oo
si(\, z) = / t*lsintdt 5 ci(\,x) = / tA 1 costdt
defined for any A < 1, and x > 0. We find:
a¢ ([ sinx — xcosx
ag [ 1+ 2%/2 —cosx —xsinz
C—E (4 i +(4—df)J(x)) , (51)
d=14+a¢pI(x), (52)
e=a¢pJ(z), (53)
aop 1—coszx
f = df 1 (2 2y —1 + (3 - df)I(m)> ) (54)
agp T —sinx
g—df_1 (2 por s +(3—df)j(x)> , (55)

11
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with

(56)

the value of which is typically in the range of 1 — 3.

As usual, the structure factor function is obtained using the formulae (EI)-(E])

One can remark that the PY approximation leads here to a structure factor which has a definite non-trivial limit function
for the densest system ¢ = 1 (that is one can safely replace ¢ by the value 1 in (50)-(®3)). This is because even if
space is entirely filled with material spheres, X-Ray scattering takes place at the fractal interface between the spheres.

The Complementary Percus-Yevick approach discussed in the Section [3.2.2] cannot apply in this case because the
interface matter/void is strongly correlated (it is a fractal surface of fractal dimension dy).

Comparison with the experimental structure factor of an extremely dense emulsion

We will compare this analytical form to structure factors obtained from numerical experiments and from recent em-
pirical experiments on extremely dense emulsions made of polydisperse spherical droplets.

Application of our approach is shown in FIG. E] where the blue dots are experimental values of S(q) obtained from a
high internal-phase ratio emulsion (¢ = 0.95) of oil in water in the presence of a small amount of C12E6 surfactant.
The initial stirring speed was 250 rpm and the system was analysed after one month’s evolution at rest. The full details
of the experimental conditions and results of the Small-Angle X-ray Scattering data are given in (Kwok et al, 2020).
For comparison, the black curve in FIG. [6]is the asymptotic solution (50)-(55) for ¢ — 1 in the Apollonian packing

case, thatis: dy = 2.47 and o = 1.9 (« is the parameter defined in ). The experimental value of <a> was the only

parameter to have been adjusted, namely: <a> = 1.07um, quite close to the value deduced from the experimental
radius distribution, namely: 1.30um. The overall shapes of both S(g) functions are clearly similar with at least two
peaks at about the same locations, namely q<a> ~ 5, and q<a> ~ 10— 11.

As usual with the PY approximation, one can notice systematic overestimation of the analytical values of S(g) com-
pared with the experimental data.

7 Extension to polydisperse Yukawa particles

We address now the question of dispersions of charged spheres interacting under a Yukawa potential. The range of the
interaction is measured by the Debye length, 1/x.

As a standard approximation, the spatial structure of the system behaves as if each radius a was replaced by its effective
particle radius: a + 1/x. The parameter ¢, as defined in (6) by: ¢ = 3¢/(1 — ¢), must then be modified by changing

the actual value of the volume fraction ¢ to ¢<(a +1/ m)3> / <a3>. It results in the following new definition of ):

_ 39
B erfgb

G (57

instead of (6)) with the parameter ¢, = <(/£a)3> / <(/-ia + 1)3> that depends on the radius distribution and not on the
volume fraction. Thus, it follows for:

e Schulz distribution of parameters s and <a>:

_ 1
P = (1+35(a))s? + 3(s + 1) ((a))? 9

(s+1)(s+ 2)(/~€<a>)3

1+
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o truncated normal distribution 1) of parameters p and <a>:

(e) !

P = (59)

14 (a) 1 1+ 2{a)

+
(1+3p2) ((a))?
e inversed Gaussian distribution of parameters p and <a>:
1
G = (60)

1+ 3/1<a> +3(1+ p2)(m<a>)2

o (1+3p>+ 3p4)(ff<a>)3

e power-law distribution (@3):

1
by =~ : (61)

3 - d max df
14— <a )
(’iamax) Amin
Note that the value of ¢, for any radius distribution simplifies to ¢, = 1 when the Debye length vanishes (x — 00),
that is, the uncharged particle case.

As a result of the form of (57), ¢,, represents the larger volume fraction of the system for which the present approach
can be used. Subsequently, the power-law radius distribution may be problematic when large volume fractions are
involved. Indeed, ap;, tends to O as the volume fraction goes to 1. The expression shows that in this case, ¢, may
become much smaller than 1 when amin/@max < 1/(K@max)>/% . This condition must then be checked before applying
the PY approximation for such a population of charged spheres.

We give now an example of possible application of these formulae. Let us consider the data and results published in
(Cabane et al, 2016) on aqueous dispersions of spherical silica particles with a broad monomodal radius distribution:

polydispersity: p =14% , (62)
mean radius: <a> =8nm, (63)
Debye length: 1/k =4.5 nm . (64)

With these experimental parameters, the value of ¢, ~ 0.271 in the three cases above (58)-(60). This means in
particular that our approach can be used in the limited range of 0 < ¢ < 0.271 (consistent with the experimental
investigation range 0.038 < ¢ < 0.24).

On Fig. [7] the structure factor S(q) is plotted for the truncated normal distribution , and five values of the volume
fraction, ¢ = 0.09,0.13,0.16,0.19, 0.21. The height Sp.x of the first peak reflects the spatial order of the particles in
the system. As the volume fraction is increased, the short-range order becomes stronger, and Sp,,x becomes higher.
This occurs until the value of Sy« rises up to the threshold 2.85: this is the Hansen-Verlet criterion for the onset
of crystallization (Baus, 1983). Beyond this threshold, the rapid decrease of short-range order reveals jamming or
clustering (limited aggregation) of the particles. Examining the behaviour of the structure factor as calculated from
our PY approach, one can expect crystallization to occur at ¢ ~ 0.173 which agrees perfectly with the experimental
results (see Fig. 1a of (Cabane et al, 2016)).

The case study here explored clearly demonstrates the great aptitude of of Vrij’s PY solution to predict the liquid-solid
transition in a system made of (possibly charged) polydisperse spheres.

8 Conclusion

Experimental structure factors measured by Small-Angle Scattering is a very powerful tool for obtaining information
about the spatial distribution of colloidal particles in a dispersion. However, the interpretation of acquired spectra
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requires that one has definite models available for comparison. In this work, we have outlined a systematic and
generalizable protocol for calculating the structure factor of any population of hard spheres at a given volume fraction
and a given radius distribution (defined over any number of bins). In particular, we have derived and provided the
pertinent analytical equations for several commonly encountered distributions in the domain of colloidal sciences
(e.g. exponential, Schulz, normal, inverted Gaussian and power law). We further demonstrated our Complementary
Percus-Yevick approach applicable to situations in which existing models fall short at very high volume fractions made
possible by extreme polydispersities. It is thus our hope that our work may aide experimentalists in their Small-Angle
Scattering data analysis through the ad-hoc creation of specifically useful comparison models that may not readily be
available in literature.

A Reformulation of the Vrij solution for the structure factor of an assembly of hard
spheres

We consider a two-phase system made of non-deformable spheres (e.g. phase O) dispersed in a liquid (phase W). The
overall volume fraction of phase O is ¢. Each sphere is supposed homogeneous and spherical, and its radius is noted a.
The population of polydisperse spherical particles has a normalized radius-distribution n(a) (normalization condition:
15" nla)da = 1).

Let ¢ be the magnitude of the scattering vector in a small-angle scattering experiment. The normalized in-
traparticle interference factor of a homogeneous sphere of radius a, is noted: ®(ga), with the function
®(zr) = 3(sinz — xcosx)/z®. The scattering amplitude contributed by the spherical particle of radius a is
then: aza®®(qa), in which a3 is a coefficient dependent on the refractive indices of the two phases. We also have to
introduce the function ¥(z) = sinx /.

The static structure factor, S(q), of such a system is generally written as:

o 14(q)

S(q) B E I¢0 (q

, (65)

~—

in which I,;(q) is the normalized intensity scattered by the system at the volume fraction ¢, and I, (¢) the scattering
intensity of the same system when diluted to an extremely small volume fraction ¢y ~ 0. In , the coefficient ¢/
is the dilution factor.

In the following steps, we use notations close to (Vrij, 1979), except for the definition of the averaged values of
quantities related to the particle radii. Below, the averaged value of a quantity f(a) is the standard one, namely:

(r@) = [ f@niaya. (66)

The analytical results obtained by Vrij for a polydisperse population of spheres are:

Ry(q) Zw ) (67)
_ﬂjﬂlpf(q) :A0(<a6<1>2>\T1 + Th|? + <a4\112>\T3|2+

+<a5<I>\I/>((T1 YT + (T + THT)) (68)

(1-9¢)*Alg) =T1]*, (69)

in which A is a normalization coefficient independent of ¢ and of ¢ but dependent on the electromagnetic properties

of the emulsion and of the radius distribution. To be precise, 49 = 1603/ (47r<a3> /3). The auxiliary functions
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Ty,Ts,Ts are given by the following expressions (Vrij, 1979):
<a3<beiq“>
Fi=l-¢|1—->—7F"1|, (70)
(a*)
<a3\I/eiq“>
Fro=1-¢|1-3"—F—|, (711)
(o)
<a4<I>eiq“>
Fip =p—7——", (72)
(e*)
<a2> — <a2\IJeiq“>
Fo1 =(1—¢)ig — 3¢ ; (73)
(«*)
Ty =F11F5 — FioFo (74)
a’deiae <a3<I>eiq“>
Ty=¢ | For—F—"— —Foo—/——" |, (75)
(o) (o)
a3<1>eiqa> <a4<I>eiq“>
T3 =3¢ | Fro—F—— —Fu—F—— (76)
(«*) (o)
These expressions lead to the structure factor function under the form:
4y2
1— 2 <a v >
5(a) =S O | 1Pl 4 93— o~
T} | <a6(I)2>
(aPow
—3—— L (FoFly + F35F10) | a7
(a09?)
where we used the relations derived from (70), (72), (74), (73):
Ti+Ty= (1-¢)Fn, (78)
T3 =—3(1—¢)F12. (79)
To continue the calculation, it is now convenient to introduce the following functions:
So+ s
fu=1+yp=—=t, (80)
V3
S
for =149 (81)
V3
s
frz=9=, (82)
V3
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where:
3

() Z% ) (83)
U3 :<(qa)3> , (84)
E(x) =sinx —xcoszx , (85)
S0 :<E(qa) eiq“> ) (86)
81 = — i<qa =(qa) eiqa> , (87)
So :<(qa)2 sin(qa) eiqa> . (88)

That way, one obtains the identity:
|T1|2:(1—¢)4|f11f22+f122|2 , (89)

hence the expression of the structure factor:

<E2>|f22|2 +Im{s2}| fi2]? — iRe{s1}(f5 fi2 — foofis)

S(g) = - > (90)
<:2> |f11f22 + [3]
At last, one uses the following identities:
$(22) =Im{fu}, o1
YIm{sy} =Im{ faa} , (92)
YRe{s1} =Re{ fi2} , 93)
to put the expression of the structure factor under the compact form:
I * 2
S(q) = m{f22(f11f22+f1§)}2 ’ 94)
Im{ f11}]f11f22 + f13]
in which the three auxiliary complex-valued functions f11, fa2, f12 are defined by:
fu=1+pE (95)
V3
far =149 22 (96)
V3
fe=vy 2, 97)
V3

with the parameter ¢ given in (83). Generally, the parameters ji1, yi2, f13, v3 do not depend on the volume fraction ¢
of the scattering matter. They are given explicitly by the following formulae:

o = <(1 —iqa) (sin(ga) — gacos(qa)) eiq“> » 98)
fo = <(qa)2 sin(qa) eiqa> : (99)
ps = — i<qa (sin(ga) — gacos(qa)) eiq“> , (100)
vy = <(qa)3> . (101)

An equivalent form of the set of formulae (94)-(I0I)), using only real-valued functions, is given in the Section [2] It
results simply from rewriting with f1; = Re{ f11} + 4 Im{f11} and the similar expressions for fao and fio.

The auxiliary parameter p; has another role in the context of scattering intensity. Indeed, using the same quantities,
the diluted scattering intensity of the polydisperse system, is:

< (sin(qa) — qa cos(qa))? >
¢

in which the proportionality constant is independent of ¢ for a constant wavelength. Using (91)), Iy can be written

under the form:

0 X ) (102)

Re{u1}
b

Iy (103)
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comparison with published results

e In (van Beurten & Vrij, 1981), the authors showed structure factor functions calculated from an assembly

of hard spheres with a Schulz distribution of the particle diameters and various values of standard deviation.
The original solution proposed by Vrij (Vrij, 1979) is used. Their FIG. 4, for example, corresponds to data
for the volume fraction ¢ = 0.1 with diameter standard deviations = 0 (monodisperse case), 0.1, 0.3 and 1.0.

The Schulz distribution with mode <2a> = 1 is used, that is:

n(a) o (ae‘ga)b71 , (104)
with the following relation between the positive exponent b and the standard deviation, o,, of the radius
distribution:

Vb

Oq = m . (105)

The monodisperse case corresponds to b — co.
The results obtained from the results given in the Section [ for the Schulz distribution with ¢ = 0.1 and the

three values of the standard deviations used in (van Beurten & Vrij, 1981) are shown in our FIG. 8] The
results are similar to previously published data.

In (Scheffold & Mason, 2009), the authors compared their experimental data to the analytical solution pre-
sented in (Ginoza & Yasutomi, 1999) for the structure factor of a polydisperse system with a Schulz diameter
distribution. Using the same set of parameters, one finds our FIG.[9) which can be compared to their Figure 1.

B formulae for some radius-distributions using the complex-valued auxiliary quantities

(98)-(100)

B.1 the Schulz distribution

The case of Schulz distribution:

n(a) o« a*~tes/() | (106)

is discussed in details in the Section 4] We give here the complete solution for S(g) in terms of the complex-valued
auxiliary functions 1, 12, ft3, in order to obtain a solution in a more compact form.

Let us introduce the auxiliary function pg:

ei(s+2) tan~?! 2z

Ho :4<1 n 41’2)8/2—"_1 ’

and the scaled variable 2 = q<a>/s.

The auxiliary parameters (i1, (2, p3 are such that:

and

p = %[1+8(s+1)$2—
—po (1 —2(s + 2)iz — (5-1-1)(3—&—4)332)} ’
Ho = %S(S‘i‘l) (1_M0) )

pa = G (1+iCs+ Do — (1~ i(s +8)2))

vs =s(s+1)(s +2)z>.

One can notice that when the value of the parameter s is an integer number, the expression of g is quite simple:

1
HO =1 = 2ig)st2
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Consequently, S(g) can in this case be expressed as the ratio of two polynomials in z. For example:
1 — 1222 + 2ix(3 — 42?)

=1= g = 107
1 — 242% + 142* + 8ix(1 — 422)
S Ho (1 ¥ 4x2)4 ) ( )
etc.
and the static structure factor, S(q), is then obtained readily from expression .
B.2 the power-law distribution
The power-law radius distribution is defined as:
n(a) « prsy for amin < a < Gmax | - (109)

The exponent dy is here restricted to the values 2 < dy < 3. The auxiliary positive parameter: p = amin /Gmax 1s used
henceforth, introduced by the relation:

1—¢p~rp> 4, (110)
as conjectured in (Varrato & Foffi, 2011), and « is a number with value of order 1. At last, we define the parameter w
as:
1—¢
w=————. (111)
k—(1-9)
The values of the first moments of the radius are calculated:
(a) = L (112)
a) = Amin )
df -1 1-— pdf
d 1— df—2
2\ _ f 2 14
<a>_df2amm(1pdf )7 (113)
d 1 (1—p* %
3\ __ 9% 3 14
<a >—3_df @min” 3=, ( 1 pir ) : (114)

Note the term p® ~3 in expression (114}, which may be quite large in the case of wide power-law distributions (that is
when p < 1).
Defining the reduced variable:

T = ¢Qmin , (115)
the expressions for 1, po, 3 can be expressed after introducing the auxiliary function p written in terms of the
incomplete Gamma function, namely:

sinx

po(x) = e 4 (—=2ix)¥ 3T (3 — dy, —2ix) , (116)
Mk 3—dy _ ds-3 . _
V3 - wdf _9 |:(Pk(x) P @k(x/p)} ) k= 1a2a3 )
_dp—2 (14227 — ¥ (1 — 2ix)
4—d;
+ d ,LL()(I),
f

pa(x) = po() ,

dy —2 [2z —i(1 — e%= 3—d;
! (x i(l—e )>+ f

It is interesting to note that when p < 1, all the quantities p% ~3py(x/p) appearing in the above formulae are
negligible, since ¢(z) ~ 1/x in x — 0, for all the three indices k = 1,2, 3, and d; > 2. In addition, all the quantities
in parenthesis in the moments (T12)-(T1T4) are ~ 1. Taking into account these approximations, and taking the real

values of all quantities, we can then recover the formulae (50)-(53).
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Figure 2: Structure factors (circles) of simulated systems constituting N = 25 000 non-overlapping spheres in a cubic
box with periodic boundary conditions. The radii of the spheres are distributed according to the exponential function
@), and the volume fractions are (from left to right): ¢ = 0.25 (black circles), ¢ = 0.50 (red circles) and ¢ = 0.69
(blue circles). The results here shown are the average values taken over 11 independent samples for each volume
fraction. The numerical data are compared with the respective PY solutions (the formula (23)) for the exponential
radius distribution and same volume fractions (the continuous curves, respectively black, red and blue). Agreement
between the PY solution and the numerical data is excellent up to ¢ = 0.50. For ¢ > 0.50, the numerical peak is
significantly flattened compared to the analytical data. The dashed blue curve is the analytical structure factor based on
Babinet’s principle (see text) of a population of voids at volume fraction 1 — ¢ = 0.31, with void sizes exponentially
distributed.
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Figure 3: Within the PY hard-sphere approximation, the height, Syax, of the structure factor peak for the exponential
radius distribution (@, is an ever-increasing function of the volume fraction ¢ (black continuous curve). This ana-
lytical PY solution is here compared to the values of Sy from simulated systems (red dots; see caption of Fig[2|for
details on the numerical simulations): up to ¢ ~ 0.50, numerical and analytical data agree perfectly well, also clearly
illustrated in FIG. @ When ¢ > 0.50, Spax of the simulated systems are lower than one would expect from the PY
solution at the same volume fraction. This non-monotonic behaviour of Sp,,x of the simulated systems is instead well
reproduced using the Complementary Percus-Yevick solution (dashed blue curve), which only underestimates Sp.x by
no more than 3%. Note: the packing algorithm used to generate the simulated systems functioned only up to ¢ > 0.69
(see Section . The point (¢ = 1, Spax = 1) represents the case of scattering by pure homogeneous matter.
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Figure 4: (top) Three kinds of radius-distribution with same mode (= 1) and same standard deviation (= 1/2). The
black continuous curve is Schulz distribution, the red dashed curve is truncated normal, and the blue dotted curve is
inverse Gaussian distribution; (bottom) respective structure factor functions in the scaled variable gm (with m = 1 the
common mode), for the three radius distributions shown above (same colour conventions as top figure). The horizontal
lines 1 and 1.2 are drawn as guides.
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Figure 5: Structure factor functions in the scaled variable gm (with m = 1 the mode), for numerical systems made of
N = 10° non-overlapping spheres with radii distributed according to Schulz, truncated normal and inverse Gaussian

distributions (same colour conventions as Fig[), at ¢ = 0.5. Each curve is averaged over two independent samples.
These curves can be compared with the analytical results shown on Figd] with the same scales.
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Figure 6: (blue dots) Structure factor (blue dots) obtained by Small-Angle X-ray Scattering of a High Internal-Phase-
ratio Emulsion made of spherical oil droplets packed at ¢ = 0.95 in water containing a limited amount of surfactant
C12E6 (full details in the reference (Kwok et al, 2020)). The experimental S(g) is compared to the solution obtained
from (50)-(55) and formulae B)-(B), with the Apollonian packing parameters: dy = 2.47, « = 1.9 and ¢ = 1 (black
continuous curve). The shape and peak magnitudes are quite similar in both cases, though the PY solution leads to
peaks higher than the experimental ones by 5%.
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Figure 7: Percus-Yevick structure factors for the truncated normal radius-distribution of charged spheres with param-
eters @)-@ and five values of the volume fraction, ¢ = 0.09,0.13,0.16,0.19,0.21. The height of the first peak
increases regularly with ¢ up to the value of the Hansen-Verlet (HV) threshold 2.85. This is the expected sign for
onset of crystallization. For the present parameters, it occurs near ¢ = 0.16 (blue continuous line). Beyond this value,
the peak height reduction demonstrates the decrease of the spatial short-range order in the particle positions. All these
results compare perfectly with the experimental data shown in (Cabane et al, 2016). In this example, the Vrij’s solution
predicts quantitatively the volume fraction threshold where crystallization starts to occur in the system.
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Figure 8: Structure factor S(g) at volume fraction ¢ = 0.1 for several standard deviations o of hard-sphere diameters.
The notation dy = 2<a> is used. These data are to be compared with FIG. 4 of reference (van Beurten & Vrij, 1981).
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Figure 9: Scaled static structure factor function S(q) at volume fractions and parameters: (¢ = 0.7 ; s = 23.34),
(¢ =0.72; s =24.27), (¢ = 0.77 ; s = 22.68), respectively (from top to bottom). These data have to be compared

s o > 29<a>

with Figures 1.a), b), c) of reference (Scheffold & Mason, 2009).
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