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Hiding in Plain View: Colloidal Self-Assembly from Polydisperse Populations
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We report small-angle x-ray scattering experiments on aqueous dispersions of colloidal silica with
a broad monomodal size distribution (polydispersity, 14%; size, 8 nm). Over a range of volume fractions,
the silica particles segregate to build first one, then two distinct sets of colloidal crystals. These dispersions
thus demonstrate fractional crystallization and multiple-phase (bcc, Laves AB,, liquid) coexistence. Their
remarkable ability to build complex crystal structures from a polydisperse population originates from the
intermediate-range nature of interparticle forces, and it suggests routes for designing self-assembling

colloidal crystals from the bottom up.
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What is the preferred structure for a population of
colloidal particles, dispersed in liquid? This simple ques-
tion has been satisfactorily answered only in the case of
spherical particles that are effectively monodisperse in size
[1-6]. As the volume fraction of particles increases, there is
a well-defined transition from a liquid to a crystal state.
Two types of structures can be found: close-packed and
body-centered-cubic crystals; the preferred form depends
on the range of the interparticle forces [5—7].

Polydisperse populations present a tougher problem.
In one limit, for particles that interact as hard spheres,
crystalline order is destroyed by even small amounts of
polydispersity [3,4,8—10]. Charged particles interact
instead via soft potentials and are more tolerant of poly-
dispersity, especially where they have an effectively narrow
size distribution, due to long-range interactions. In this
other limit, a crystal state can be retained at low volume
fractions, regardless of significant size polydispersity, if the
interaction polydispersity remains low [6,11,12]. Between
these two limits is a vast region of phase space where
we do not know whether homogeneous crystallization or
fractionated crystallization is possible.

Here, we address the self-organization of polydisperse
populations of particles that interact through forces with an
intermediate range, comparable to the variations in particle
size. Using high-resolution scattering methods, we find that
such populations can evolve through fractionated crystal-
lization to yield coexisting crystals with different struc-
tures. These crystals can have large, complex unit cells with
specific sites for particles of different sizes. To explain this
result, we use numerical simulations to demonstrate how a
broad distribution of particles can split spontaneously into
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different types of crystals, which cooperate to make the best
use of the whole population.

The colloids that we have used are industrially produced.
They consist of nanometric silica particles, dispersed in
water (Ludox HS40). The particles are roughly spherical,
with an average radius of 8 nm and a size polydispersity
of 0.14 [13,14]. We used near-equilibrium dialysis to
equilibrate them against NaCl solutions (5 mM, pH 9.5).
They were then slowly concentrated by the addition
of poly(ethylene glycol) to the solution outside the dialysis
membranes, as in Refs. [14,15]. Under these conditions,
the particles repel each other via a screened electrostatic
interaction, with an effective Debye length of 2.5-4.5 nm,
depending on their volume fraction ¢. Further details of
our methods and the dispersion properties (e.g., charge,
equation of state, density) are given in the Supplemental
Material [16].

Samples were characterized through small-angle x-ray
scattering (SAXS), using ID02 at the ESRF. The strength of
ordering in a colloidal dispersion can be evaluated by the
height, S,.c, of the main peak of its effective structure
factor S(g), for scattering vector g [30-32]. S(¢) was found
by dividing the radially averaged scattering intensity /(g)
by the form factor of a dilute (¢ = 1073) dispersion, and
normalizing at high ¢, as in Refs. [14,32-34]. For low ¢,
these S(g) had a broad main peak, indicative of disordered
liquid arrangements of particles [Fig. 1(a)]. Indeed, all of
these samples also behaved rheologically as fluids. The
value of S,,,« (Table I) rose slowly with increasing ¢, from
1.2 at ¢ =0.04, to 2.6 =0.1 at ¢ = 0.16. Despite our
polydispersity, which should lower S, slightly [32,33]
and add a low-g incoherent scattering [33,34], these values
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FIG. 1. (a) Effective structure factors. At low volume fractions,
¢, the dispersion has a liquid structure, with broad peaks. When
the intensity of the liquid peak would exceeded 2.85, bcc
colloidal crystals appear alongside the liquid phase. (b) At higher
¢, the scattering spectra show many sharp peaks in addition to
the (indexed) bcc peaks. Their positions and relative intensities
correspond to crystals of a Laves MgZn, phase, in coexistence
with the bee and liquid phases. (c) These diffraction patterns
consist of spots arranged in rings and imply the existence of many
micron-sized crystallites, which (d) can be seen directly by
microscopy.

TABLE I. Sample summary, showing the volume fraction ¢
(£0.005), the intensity of the liquid peak S,,,x and its predicted
value (MSA) using Ref. [35], and the observed phases.

¢ Smax (1iq.) Sax (MSA) Phases
0.038 1.2 1.33 liquid
0.046 1.4 1.40 liquid

0.057 1.5 1.50 liquid

0.067 1.6 1.58 liquid
0.079 2.2 1.69 liquid

0.085 1.8 1.74 liquid
0.128 2.2 2.12 liquid
0.131 2.1 2.15 liquid
0.159 2.7 2.42 liquid
0.161 2.5 2.44 liquid
0.188 e 2.72 liquid, bec
0.207 e 2.94 liquid, bee
0.219 cee 3.08 liquid, bcc, Laves
0.235 cee 3.28 liquid, bcc, Laves
0.240 e 3.35 liquid, bcc, Laves

agree well with the Hayter-Penfold mean spherical approxi-
mation (MSA) model [35] of monodisperse Yukawa
spheres (Table I, using 8 nm particles with 5 mM salt
and a surface charge of 170e).

At ¢ = 0.19 and 0.21, we found that the 2D interference
patterns of our dispersions also contained sharp diffraction
spots, superimposed on the liquidlike scattering ring.
The spots are the powder-diffraction pattern of small
crystallites. Here, any fractionation between the liquid
and crystals would invalidate the decomposition of /(q)
into a form factor and effective structure factor. Instead, we
calculated the complex structure factor F2 ~ I(q)q?, which
does not require knowledge of the form factors of each
phase. The positions of the peaks of F(g), as well as
systematic extinctions (4 + k + [ odd), indicated that they
originated from colloidal crystals with a body-centered-
cubic (bcc) structure [see Fig. 1]. This is in empirical
agreement with liquid state theory, where, according to
Verlet and Hansen [30,31], the liquid state with short-range
order is unstable with respect to a crystalline structure
when S« > 2.85. However, our dispersions were quite
polydisperse, while the Verlet-Hansen criterion is strictly
true only for monodisperse populations. Our observations
suggest a possible reason why this agreement may still
hold. It involves growing the bcc crystals from a narrow
subset (i.e., an effectively monodisperse set) of the original
population, and leaving the remaining particles in a liquid
phase that coexists with these crystals.

As the dispersions were compressed to a higher ¢,
between 0.22 and 0.24, their scattering spectra became
more complex. The interference patterns of these disper-
sions revealed a large number of spotty rings [Fig. 1(c)].
Typically, hundreds of spots were seen, whose diameters,
5=0.003 nm~!, imply the presence of many crystallites
with a size of at least /6 = 1 um. Microscope images
[Fig. 1(d)] of such dispersions confirm the presence of
stable, free-floating crystals.

In these spectra we detected, after radial averaging, a
broad liquid peak, peaks from the bcc phase, and up to 14
additional well-resolved peaks, including a triplet at low g,
implying the presence of a crystal phase with a large unit cell.
The new peaks can all be indexed (see Table II and the
Supplemental Material [16]) to the powder spectrum of a
crystalline phase of compact hexagonal (P6;/mmc) sym-

metry, with lattice constants a = 43.58 nmand ¢ = /8/3a,

and a unit-cell volume of v/2a>=1.17x10nm?>, in the
¢ = 0.235 sample. In the same sample, the bcc peaks were
indexed to a unit cell with lattice constant ay,.. = 27.11 nm
and volume @, = 1.99 x 10* nm>. The unit-cell volume
of the new phase is therefore 5.9 times larger than that of
the coexisting bce phase, which contains two particle sites
per cell. Assuming that the number density of the sites is
comparable in both phases—which, in conditions of close
equilibrium and not too large fractionation, is reasonable—
one finds that the new phase has 12 particles per unit cell.
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TABLE II. Positions and relative scattering intensities of the
observed and fitted diffraction peaks of the Laves phase, for
¢ =0.235. F is a complex structure factor corrected for the
multiplicity of the peaks, m, and the averaging of the powder-
diffraction pattern; zero indicates a systematic extinction, while
not obs. indicates that a line was not observed experimentally.

h k l m exp (nmil) dfit (nmil) Fexp Fﬁt
0 0 1 2 not obs. 0.0883 not obs. 0

1 0 0 6 0.1667 0.1665 12.9 12.9
o 0 2 2 0.1769 0.1766 26.9 21.6
1 0 1 12 0.1885 0.1884 9.0 12.0
1 0 2 12 0.2431 0.2427 18.1 21.9
0o 0 3 2 not obs. 0.2648 not obs. 0

1 1 0 6 0.2891 0.2883 84.3 84.3
1 1 1 12 not obs. 0.3015 not obs. 0

1 0 3 12 0.3132 0.3128 98.2 79.4
2 0 0 o6 0.3329 0.3329 52.4 42.3
1 1 2 12 0.3378 0.3381 73.7 87.6
2 0 1 12 0.3441 0.3444 57.5 76.2
0o 0 4 2 0.3530 0.3531 86.2 84.8
2 0 2 12 0.3767 0.3768 20.1 32.1
1 0 4 12 0.3903 0.3904 25.8 25.8
1 1 3 12 not obs. 0.3915 not obs. 0

2 0 3 12 0.4256 0.4254 19.6 18.2
2 1 0 12 0.4402 0.4404 8.4 10.0

One can reasonably expect that this phase is constituted
by a mixture of nanoparticles with distinct mean diameters.
Among the varied options [36], only one is of the compact
hexagonal space group and contains 12 atoms per unit cell:
the MgZn, Laves phase. Here, four Mg atoms sit on the
four equivalent f Wyckoff positions, while eight Zn atoms
are distributed on the six 4 and two a positions. This
suggests that the new phase is composed of particles with
two or three separate sizes organized into a Laves phase
[37]. Within this hypothesis, the intensities of the Bragg
peaks were fit with three free parameters corresponding to
the radii r,, r¢, and r;, of particles at the a, f, and A sites
(see the Supplemental Material [16]). The fit, the results of
which are shown in Table II, converges when rp= 9.1 £
0.3 nm and r, = r;, = 7.3 + 0.3 nm. The stoichiometry is
consequently AB,, with four large particles and eight small
particles per unit cell. The larger particles occupy relatively
spacious truncated tetrahedron environments, where they
are comfortably surrounded by rings of smaller particles
in octahedral sites (Fig. 2). In contrast to repulsive
monodisperse crystals [2], the density of this Laves phase
thus appears to be slightly lower (0.22) than that of the
coexisting liquid (0.235); this situation could relate to the
size selection of the individual sites.

Various AB, phases are well known in binary mixtures of
hard spheres [38—43]. For example, the AlB, structure is a
preferred crystal phase for binary mixtures with a size ratio
of the smaller to larger particles between approximately 0.4
and 0.6 [39] and occurs in gem opals [40,41], while the
MgCu, phase can be templated by walls [43]. What we

(a)

FIG. 2. (a) Unit cell of the Laves MgZn, phase. (b) Larger-than-
average particles (yellow) occupy central sites and are surrounded
by rings of smaller-than-average particles (blue).

have shown, however, is that similar phases also naturally
arise in the solidification of broad and continuous pop-
ulations of nanoparticles.

An explanation for the coexistence of different crystal
types, each composed of a subset of particle radii, can be
made by seeking the equilibrium phases of the particle
population. To this end, we investigated the fractionation of
polydisperse charged particles through Gibbs-ensemble
Monte Carlo numerical simulations [44] of a combination
of a Laves MgZn, phase and a bcc phase, with a fcc phase
added as a control. The model is similar to that used in
Ref. [45]. Each phase was treated as an isolated volume
(avoiding grain boundaries), but particles could move
randomly between sites within each phase, and between
phases, according to a Monte Carlo Metropolis algorithm at
room temperature [46]. Although, for simplicity of dem-
onstration, no colloidal liquid was modeled, we would
expect such a phase to act as the medium of particle
exchange and an acceptor of misfit particles. The propor-
tions of particles and the lattice constants of the three
phases were allowed to vary with volume exchange
between them, keeping the total volume constant.

We considered a model of 22466 particles with a
Gaussian distribution of size r, an average radius of
8 nm, and a polydispersity of 0.14 [13], with a global
¢ = 0.22. Interactions between particles were modeled as
hard core plus Yukawa pair potentials, with an effective
Debye length of x¥™! =2.8 nm and an effective surface
charge density of 0.2¢/nm? (i.e., the charge on particle i
scales as r?). These parameters are estimated as in
Ref. [25-27], accounting for modest charge renormaliza-
tion, and they agree with the dispersion’s experimentally
determined equation of state [15,28].

Over time, the system evolved to find a configuration of
minimal Madelung energy, and the proportion of each
phase stabilized; Fig. 3 shows the final distribution of
particle sizes, according to phases and sites. It shows how
the coexistence of a Laves phase with the bcc phase is
possible: the bcc phase uses the most populated part of
the distribution of particle sizes, near the center of the
distribution. In this example, a small minority of particles
was also taken into the fcc phase, although this phase
disappears if a longer screening length (3 nm) is used. In
either case, the remaining particles have a bimodal size
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FIG. 3. Monte Carlo simulations of the fractionation of a
polydisperse colloidal dispersion into three preset crystalline
structures (bce, fce, Laves MgZn,). Shown are the final equi-
librium particle-size distributions in each phase. The vertical lines
show the average radii extracted from the SAXS data for particles
in the bcc phase (black), and in the tetragonal (blue) and
octahedral (red) sites of the Laves phase.

distribution and thus fit efficiently into the differently
shaped sites of the Laves phase. Exploring various param-
eter values, we found that these results were robust to
doubling the charge density of the particles, or letting their
charge scale with r (as occurs for strong charge condensa-
tion [29]), but were sensitive to changes to the effective
screening length (between 2.2 and 3.0 nm). The model’s
average radii of 7.0, 8.2, and 9.6 nm, for particles at
equilibrium in the Laves tetragonal, bcc, and Laves
octahedral sites, respectively, correspond well to the cor-
responding experimental values of 7.3, 8.3, and 9.1 nm.

We have thus described how a polydisperse population
can split into coexisting phases of a colloidal liquid, a bcc
crystal that preferentially selects the most abundant particle
sizes, and a Laves phase that accommodates the remaining
binary distribution of particles. This segregation by particle
size is known as fractionated crystallization; similar proc-
esses are known in molecular systems [47], including
geochemistry [48]. For hard-sphere colloids fractionation
has been predicted beyond a terminal polydispersity of
about 6% [49-53]. For medium-range Yukawa interactions
(where xa is between 2.5 and 10), recent simulations [54]
have suggested that a size polydispersity of 10%—15%,
comparable to ours, is required to hinder crystallization,
and thus to potentially trigger fractionation.

Experimentally, the best prior evidence of colloidal
fractionation is the work of van Megen and collaborators
[10,55,56], who invoke it to explain the nucleation proc-
esses of colloidal crystals near a terminal polydispersity.
The coexistence of multiple solid phases is also known in
cases of low-dimensional systems such as platelets [57] or
particles confined to a plane [58]. Further evidence may
also be hiding in old data such as Fig. 13 of Ref. [59],
which appears to imply the presence of large-unit-cell
crystals in dispersions similar to ours (10.2 nm silica with
9% size polydispersity).

The fractionation of particles in our experiments depends
on their intermediate range of interactions. Much work on

colloidal crystals is performed with particles that interact as
hard spheres, and which crystallize when they are in close
to direct contact, at ¢ ~0.5. When such particles have a
broad distribution of sizes, the unavoidable overlaps of any
large adjacent particles inhibit the formation of a structure
with long-range order [3,4,8,53], and dynamic arrest turns
the dispersion into a glass [2,8]. Our particles interact instead
through soft potentials. Assuming an effective Yukawa
potential [25-27], the pair potential of two average-sized
particles reaches about 3 kT at a volume fraction of 20%,
corresponding to a surface separation (for bce) of 8 nm.
In this state, overlap of the particles themselves is still a
rare occurrence, determined by the frequency of very large
particles. These few “outliers” can easily be rejected away
from the surfaces of growing crystals, as the soft potentials
also keep the mobility of such particles high.

The width of the particle-size distribution and the range
of particle interactions together control the frequency of
such outliers, which are then available to build more diverse
structures. We consider three cases. If the interactions are
long range (with an effective diameter > a), then variations
in the particle size will be screened, and simple fcc or bee
crystals are both expected and seen [1,6,11,12]. If the
interaction range is intermediate—for example, xa ~ 1—
but the polydispersity o is too high, then there will be too
many overlaps to nucleate the first bce crystals, and the
dispersion may remain in a liquid or glass phase. Inverting
Pusey’s criterion [8] suggests that this will be the case when
¢ > c(1/(1 + 6))?, where the order-1 constant ¢ depends
on how tolerant a crystal is to overlaps. If, however, the
effects of the soft potential and the number of overlaps
are balanced against each other, as in this Letter,
then fractionation is encouraged, and the phase space of
polydisperse colloidal dispersions is opened.

The behavior of such polydisperse nanometric dispersions
points to directions that have not been explored thus far,
despite theoretical predictions [49,51-54,60]. We demon-
strate here fractionated crystallization, with the coexistence
of at least three very different phases (liquid, bcc, and Laves),
and the formation of complex crystals that efficiently utilize
the full size distribution. The link between the particle-size
distribution and the structures also gives us a scheme for gen-
erating even more complex phases through the crystallization
of populations of particles with broader size distributions,
provided that they interact through soft medium-range
potentials. The variety of structures waiting to be discovered
could be enormous, given that, within the limits defined
above, there exists a huge phase space of different size
distributions and interaction potentials to explore.
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