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Microorganisms such as bacteria andmany eukaryotic cells propel
themselves with hair-like structures known as flagella, which can
exhibit a variety of structures and movement patterns1. For
example, bacterial flagella are helically shaped2 and driven at
their bases by a reversible rotary engine3, which rotates the
attached flagellum to give a motion similar to that of a corkscrew.
In contrast, eukaryotic cells use flagella that resemble elastic rods4

and exhibit a beating motion: internally generated stresses give
rise to a series of bends that propagate towards the tip5–7. In
contrast to this variety of swimming strategies encountered in
nature, a controlled swimming motion of artificial micrometre-
sized structures has not yet been realized. Here we show that a
linear chain of colloidal magnetic particles linked by DNA and
attached to a red blood cell can act as a flexible artificial flagellum.
The filament aligns with an external uniformmagnetic field and is
readily actuated by oscillating a transverse field. We find that the
actuation induces a beating pattern that propels the structure, and
that the external fields can be adjusted to control the velocity and
the direction of motion.
To achieve controlled motion or swimming of manmade micro-

structures, two conditions need to be fulfilled. First, energy should be
injected and transferred into amechanical deformation of the device.
Second, the sequence of deformations must be cyclic and not time-
reversible. The second requirement arises from the fact that fluid
dynamics at the micrometre scale is dominated by viscous rather
than inertial terms. This means that a purely reversible internal
displacement is not associated with any net motion (the ‘scallop
theorem’)8, and that a propelled microscopic device must thus use a
swimming strategy that breaks the time-reversal invariance8–10. In the
case of spermatozoa, for example, a bending wave propagates from
the head towards the tail, inducing a net translational velocity. The
issue of the direction of this motion is related to the structure of
the filament. More precisely, the filament surface governs the ratio of
the tangential viscous coefficient zk to the perpendicular viscous
coefficient z’ (refs 6, 7). For smooth flagella, slender-body theory11

gives z’=zk < 2; so that the wave and overall velocity have opposite
directions. By contrast, for flagella decorated with mastigonemes
(hair-like filaments), the effective tangential resistive coefficient
becomes much larger than the effective perpendicular resistive
coefficient12, so that flagella carrying mastigonemes swim in the
same direction as the propagating wave. The propulsion exerted by
microorganisms has motivated some theoretical and numerical
modelling6,9,13, especially for natural flexible filaments14,15. For this
kind of swimmer, one relevant dimensionless parameter, previously
called the ‘sperm number’16, is shown to be:

Sp ¼ L=
k

z’q
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where L is the length of the filament, k the bending rigidity, and q the
angular frequency of the driving. Sp represents the relative import-
ance of viscous to elastic stresses on the filament. For the so-called

‘one-armed swimmer’ two regimes were predicted: one dominated
by internal elasticity at low Sp and the other dominated by viscous
friction at high Sp. Between these two regimes, the existence of a
maximum normalized swimming speedV/Lqwas predicted for Sp of
the order of unity. At this time, spermatozoa provide the only
available experimental data and, using current experimental esti-
mates of their stiffness16, seem to operate at Sp ¼ 7. Motivated by
these two regimes and their potential involvement in the propulsion
mechanism of real flagella, we attempt to measure the swimming
velocity of a controlled manmade swimmer as a function of the
dimensionless number Sp and ask whether there is indeed a maxi-
mum and how it depends on the type of actuation.
Our microscopic device consists of two parts: a magnetically

activated ‘flagellum’ that provides propulsion, and a second part,
which is the object to be transported (a red blood cell is the example
shown here). The flagellum is made of micrometre-scale magnetic
colloids attached together by short flexible joints. The filament is
driven by a time-varying magnetic field that transfers energy and
leads to motion. Indeed, the filament tends to follow the field
direction, and so by oscillating the orientation of the net magnetic
field we actuate the filament. However, as a consequence of its
flexibility and viscous friction, reorientation is also associated
with bending. The coupling between magnetic forces, filament
flexibility and the viscous drag from the solvent that acts on the
filament generates controlled deformations. With the proper field
conditions and flexibility, the time-reversal invariance of the filament
deformations is broken, and thus the attached cell is propelled.
The filaments are made of superparamagnetic 1-mm-diameter

colloids linked17,18 by several 107-nm-long (315 base pairs, bp)
double-stranded DNAs as sketched in Fig. 1. The length and number
of the DNA linkers and the particle diameter control the flexibility.
These filaments are attached by one end to a red blood cell following
the sample preparation procedure described in the ‘Sample prepa-
ration’ section of the Methods. To generate motion in a controlled
direction and with a controlled speed, twomagnetic fields are used. A
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Figure 1 | Schematic representation of a flexible magnetic filament. The
magnetic particles are coated with streptavidin (red cross symbols). Under
an applied magnetic field Bx the particles form filaments. Double-stranded
DNAwith biotin at each end can bind the particles together via the specific
biotin–streptavidin interaction. The experiments are performed with
8.4 £ 104 DNAs per particle.
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homogeneous static field Bx ¼ Bxx imposes a straight configuration
to the filament. In addition, a sinusoidal fieldBy ¼ Bysin(2pft)ywith
an adjustable frequency f is applied in the direction perpendicular to
Bx. These two fields have comparable amplitude so that the resulting
field Be oscillates around the x axis.
Because the particles are superparamagnetic, they acquire a

magnetic dipole when subjected to a magnetic field. As the beads
are known to have a preferred magnetization direction19, there are
two different contributions to the magnetic torque exerted upon the
filament: the first contribution is due to the dipolar interactions
between the beads, and the second contribution is due to the
interaction between the dipole and the external field. Both effects
cause the filament to pivot to follow the magnetic field. We use a fast
camera to record the dynamics of a microstructure formed by a red
blood cell specifically bound to one end of a 30-mm-long filament. As
the transverse field By oscillates, the free end of the filament
successively bends to follow the resulting field, which creates an
undulation that propagates towards the attachment point.
In Fig. 2a–t we show a sequence of pictures of the dynamics during

one period. The wave propagation, which is responsible for the non-
reversible displacements of the filament, is visible in Fig. 3 in which
we have superimposed the skeleton of each profile. We find that the

overall displacement of this swimmer is always directed towards the
free extremity of the filament (see the Supplementary Movies) and
opposite to the propagation of the bending wave7. This behaviour is
an intrinsic consequence of these magnetically actuated flagella. The
bending wave propagates from the free end because it is the most
mobile and has the largest-amplitude displacement although the
entire filament is magnetically actuated. By contrast, spermatozoa for
which the bending wave propagates from head to tail move in the
direction of the head. The ‘roughness’ of the filament evidently has
no decisive impact upon the swimming direction, which, just as for
smooth flagellum, opposes the direction of bending-wave propa-
gation. This is in agreement with previous experiments and simu-
lations20,21 that prove that a chain of spheres has almost the same drag
coefficient as a prolate spheroid of the same length and aspect ratio.
The mean swimming velocity of this device is always found collinear
to the static field Bx and has a maximum of about the diameter of a
red blood cell per second. As a final remark, we note that within the
same sample we have sometimes observed two different swimming
devices moving in opposite directions according to their initial
orientation, which rules out any suspected consequences of residual
field gradients. The SupplementaryMovies show the dynamics of the
filament at two frame rates: 440 frames s21 (SupplementaryMovie 1)
and 40 frames s21 (Supplementary Movie 2), for which L ¼ 12 mm,
f ¼ 10Hz, Bx ¼ 9mT, By ¼ 14.5mT.
The physics of the motion of the magnetic filament can be

described by the equations briefly presented in the ‘Equation of
motion’ section of the Methods and detailed in the Supplementary
Information. The final equations ofmotion involve three dimension-
less numbers: Sp as previously defined, b0 ¼ By=Bx; and the magneto-
elastic number:

Mn ¼
2pðaBxLÞ

2

3m0k

xk 2x’ þ xkx’=4

ð12xk=6Þð1þ x’=12Þ

� �

where xk is the susceptibility of the easy direction, x’ the suscep-
tibility in the orthogonal direction, a the radius of the particles, and
m 0 the magnetic permeability in free space. To measure k and
estimate Mn, we assume the susceptibilities (xk and x’) to be
identical and equal to the value given by the manufacturer (see
‘Parameters measurement’ section in the Methods).
In Fig. 4, we plot themeasured scaled swimming velocityV/Lq as a

function of Sp, for three different values ofMn. As predicted
14,15, the

normalized velocity has a maximum; however, it is clear that its

Figure 2 | Beating pattern of the motion of a magnetic flexible filament
attached to a red blood cell. The time interval between each image is 5ms.
The white arrows represent the magnetic field (Bx ¼ 8.3mT, By ¼ 13.7mT,
f ¼ 10Hz). The white arrow on the top shows the direction of motion. The
filament length is L ¼ 24 mm.

Figure 3 | Sequence of deformation of the end of a free filament. The
propagation of a bending wave is indicated by the arrows. Conditions for the
magnetic field: Bx ¼ 9mT, By ¼ 14mT, f ¼ 20Hz. Each image corresponds
to pictures taken every 2.5ms. The length of the portion of the filament
shown is 34 mm.
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position depends on the field strength since it shifts from Sp ¼ 1.8 to
2.8 when the dimensionless field strengthMn varies from 3.4 to 10.3.
The maximum normalized velocity corresponds for each value of the
magnetoelastic number to the optimal balance between elasticity,
magnetically induced internal forces and viscous forces.
In our experimental realization of a controllable swimming

microdevice, a magnetically actuated flexible filament has the ability
to exhibit, in a precise regime, a non-reciprocal motion responsible
for propulsion. The internal torques, originating from a combination
of dipolar colloidal interactions and anisotropy of the susceptibility,
can be externally controlled so that the velocity and the direction of
motion can be chosen. This swimming device displays a maximum
normalized velocity as a function of the dimensionless parameter Sp,
as already predicted in the case of model elastic filaments. However,
in our device this optimal combination is shown to depend also on a
distinct parameter,Mn, that involves the actuating field strength. We
hope that a deeper understanding of this effect may clarify the
consequences of actuation type and mechanism on the optimal
conditions for swimming in nature. These magnetically actuated
colloidal devices might possibly also be useful in the precise and
selective positioning of micro-objects or the controlled motion of
minute quantities of surrounding fluids22,23.

METHODS
Sample preparation. Biotinylated double-stranded DNAs (315 bp) are syn-
thesized using the polymerase chain reaction (PCR) kit (Expand High Fidelity
PCR System) provided by Roche Applied Science using biotinylated primers
(Eurogentec) and a l-DNA template. The resulting DNA solution is purified and
its concentration is measured by fluorescence (Picogreen).

Human red blood cells (6ml) are first washed three times in 500ml PBS buffer.
Then, they are incubated for 30min in 1ml of Biotinylated PEG-NHS (3,400Da)
provided by Nektar Therapeutics in a PBS buffer. After 1min the sample is
centrifuged at 400g. and the cells are redispersed in 500 ml of PBS buffer
containing a pluronic surfactant (F-127) at 0.5% by weight.

Superparamagnetic particles of 1mm in diameter (,10 £ 109 beadsml21)
provided by Dynal (Dynabeads MyOne Streptavidin) with streptavidin grafted
onto their surface (7 £ 105 streptavidin molecules per particle) are diluted 10£

in a PBS buffer with F-127 (0.5 wt%). They are washed twice following this
procedure before storing them in this buffer. In a 1,000-ml Eppendorf tube we
mix: 0.5ml of 315-bp DNA (1.4 £ 1026M), 40 mL of PBS buffer containing
0.5wt% of F-127, 5 ml of the 10 £ diluted streptavidin beads, and 10ml of the
biotinylated red blood cells solution. The Eppendorf tube is placed in a spatially
homogeneous magnetic field (30mT) for 15min. 10 ml of the solution is then
added to 40 mL of PBS buffer with F-127 (0.5 wt%). These assemblies are
transferred into a capillary (2 cm £ 100 mm £ 1mm) that is sealed at both
extremities with highly viscous silicone oil (Rhodia). Because this last step can
be responsible for the breaking of the structures, we recover them by replacing
the capillary in the same magnetic field (30mT) for 5min.
Equation of motion. In the Supplementary Information, we derive equations of
motion for the filament, which is modelled as a magnetically driven inextensible
elastic rod. An expression for the torque resultant upon the filament is given that
incorporates both dipole–dipole interactions between the beads in the chain and
possible anisotropy in the magnetic susceptibility of the beads. The filament
swims close to the floor of the capillary tube, and therefore experiences greatly
enhanced drag. The red blood cell is approximately disk-shaped; we determine
its radius a s from the video images, and assume that it has the same approximate
thickness (which sets the distance from the filament to the tube floor, h). The red
blood cell sits on a thin film of fluid of thickness d, where d is used as a fitting
parameter to ensure agreement at high frequency. d is set physically by a
combination of steric and electrostatic interactions between the red blood cell
glycocalyx and the coating on the capillary tube floor, and by elastohydro-
dynamic lift forces generated by the moving red blood cell. We suppose that the
former effect is dominant, so that d is independent of swimming speed for a
given swimmer. The torque and stress resultants vanish at the free end of
the filament. At the tethered end, the moment and force are balanced against the
rotational and viscous drags upon the red blood cell, which are dominated by the
contribution from the lubrication layer.
Parameters measurement. The bending rigidity k of the filament is measured
from the hairpin shape as previously described17, by using the formula

Cmax ¼
ffiffiffi
p
3

p
B
2a

ffiffiffiffiffiffiffi
a4x2

km0

q
, where Cmax is the maximum of curvature and x is the

magnetic susceptibility, which is slightly dependent on B and which is given by

the manufacturer (x < 1). We find k ¼ (3.3 ^ 1.6) £ 10222 Jm21. This value is

comparable to the one found for real flagella24,25: k ¼ 4 £ 10222 Jm21. We took

z’ ¼ 4ph (refs 15, 24 and 26).
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