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Using the framework of stochastic thermodynamics, we present an experimental study of a doublet of
magnetic colloidal particles that is manipulated by a time-dependent magnetic field. Because of
hydrodynamic interactions, each bead experiences a state-dependent friction, which we characterize
using a hydrodynamic model. In this work, we compare two estimates of the dissipation in this system: the
first one is energy based since it relies on the measured interaction potential, while the second one is
information based since it uses only the information content of the trajectories. While the latter only offers a
lower bound of the former, we find it to be simple to implement and of general applicability to more
complex systems.
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In the last decade, a broad number of works have
significantly improved our understanding of the thermo-
dynamics of small systems. A central idea, namely the
application of thermodynamics at the level of trajectories,
has developed into a field of its own now called stochastic
thermodynamics [1–4]. Manipulated colloids are a para-
digmatic example of stochastic thermodynamics because
of the ease with which colloids can be manipulated and
observed.
Many studies of such systems have used a single

colloidal particle, in a harmonic [5] or anharmonic potential
[3,6], which is described by an overdamped Langevin
equation with a constant diffusion coefficient. Recently,
Celani et al. have pointed out that the overdamped Langevin
description fails to capture some aspects of the thermody-
namics of this system in the presence of multiplicative noise
due to temperature gradients [7]. In soft matter systems,
temperature gradients are difficult to control at the micron
scale, but multiplicative noise arises frequently due to
hydrodynamic friction. In this Letter, we study such a case
using a pair of magnetic colloids that are manipulated by a
time-dependent magnetic field. This system offers a con-
venient mean to measure forces in various soft matter and
biological systems because the colloids can be embedded
in complex fluids or molecules of interest can be grafted
on them [8].
In this Letter, we focus on a pair of bare manipulated

colloids in water. In the first part, we evaluate the work
distribution in this system within stochastic thermodynam-
ics. In the second part, we evaluate an information theoretic
bound for the dissipation in this process using only
trajectory information.
The projection of the Brownian motion of both beads is

observed in the plane parallel to the bottom wall with video
microscopy. We assume that the fluctuations perpendicular

to the wall are negligible since the beads have settled under
gravity. Therefore, we focus on the two-dimensional
relative displacement vector in polar coordinates r ¼ ðr; θÞ,
as shown in Fig. 1.
The interaction between the beads is modeled using a

potential, which is the sum of three contributions: the
dipolar interaction of the magnetic beads with each other
Udip, the interaction Umag of the beads with the applied

FIG. 1 (color online). Sketch of the experiment showing the
two magnetic beads (top) and the time dependence of the applied
magnetic field BðtÞ (bottom). The protocol is composed of
driving phases of duration τ followed by pauses of duration
τeq. The open circles represent two symmetric points at times t
and τ − t in this protocol.
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magnetic field B ¼ Bẑ, and a repulsive interaction of
electrostatic origin Uel:

Uðr; θ; BÞ ¼ Udipðr; θ; BÞ þ UmagðBÞ þ UelðrÞ: (1)

This potential has a short range repulsive part due to
electrostatics and a long-range attractive part due to dipolar
interactions as described in [9] and in the Supplemental
Material [10]. First, we prepare the system in an equilib-
rium state in a constant magnetic field. In this case, the
distribution of the relative coordinate should follow a
Boltzmann distribution, which we use to test our model.
We manage to obtain a very good fit of the data in a
rather large range of magnetic field from B1 ¼ 0.15 to
B2 ¼ 0.45 mT, as shown in Fig. 2. In this range, we can
assume that the magnetic dipole moments carried by the
beads have a fixed orientation along ẑ. We can observe in
Fig. 2 that the potential is anharmonic at low magnetic field
but harmonic at high field, where the motion of the beads
becomes more confined to the vicinity of the minimum of
the potential.
Having well characterized the fluctuations of this system

at equilibrium, we now investigate the nonequilibrium
fluctuations of the same beads when they are driven by
a time-dependent magnetic field. The protocol of magnetic
field is a periodic function of period τ þ τeq, with τ and τeq
defined in Fig. 1. The explicit time dependence of the
protocol is BðtÞ ¼ B2 þ ðB1 − B2Þsin2ðπt=τÞ for 0 ≤ t ≤ τ
and BðtÞ ¼ B2 for τ ≤ t ≤ τ þ τeq. The time τeq represents

the duration of a pause that is needed to prepare the system
at equilibrium for the beginning of the next cycle.
We focus on the dynamics of the displacement vector

r ¼ ðr; θÞ, which we describe with the following over-
damped Langevin equations:

ΓrðrÞ_r ¼ fr − ∂rUðr; θ; BÞ þ ηr∘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTΓrðrÞ
p

;

ΓθðrÞ_θ ¼ fθ − ∂θUðr; θ; BÞ þ ηθ∘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTΓθðrÞ
p

; (2)

where ∘ denotes the Stratonovich product, ΓrðrÞ and ΓθðrÞ
denote friction coefficients, and ηi is a white noise with
i≡ fr; θg such that hηiðtÞηjðt0Þi ¼ δijδðt − t0Þ. Drift terms
fr ¼ −∂r lnΓrðrÞ=2 and fθ ¼ −∂θ lnΓθðrÞ=2 are chosen
such that the dynamics converge toward equilibrium for a
constant magnetic field [11,12].
Dissipation in this system is mainly of hydrodynamic

origin. In view of the proximity of the two beads with
respect to each other and to the wall, one can rely on the
lubrication approximation to describe the hydrodynamic
friction coefficients. These coefficients are the sum of
the friction due to the sphere-sphere interaction Γs

i and
the friction between the sphere and the bottom wall Γw

i .
More explicitly ΓiðrÞ ¼ Γs

i þ Γw
i for i≡ fr; θg, with

Γs
rðrÞ ¼

γa
4r − 8a

; Γw
r ðrÞ ¼

8

15
γ ln

a
b
;

Γs
θðrÞ ¼

γr2

2kðrÞ ; Γw
θ ðrÞ ¼

8

15
γr2 ln

a
b
; (3)

where a is the bead radius, b is the distance between the
beads and the wall, γ is the bare friction coefficient of a
single bead far from the wall, and kðrÞ is a function given in
the Supplemental Material [10] and in Ref. [13].
In order to test this model, we have measured exper-

imentally the radial time autocorrelation function. The short
time behavior of this function gives the radial diffusion
coefficientDrðrÞ ¼ kBT=ΓrðrÞ. The data points can bewell
fitted to Eq. (3), as shown in the inset (ii) of Fig. 2. From
this fit, one finds that the diffusion coefficient of a single
bead far from the wall isD0 ¼ kBT=γ ¼ 0.12 μm2s−1. This
value is rather close to the Stokes-Einstein estimate
0.15 μm2s−1 for a bead of diameter 2.805 μm in water.
Within this framework, we study the distributions of

thermodynamic quantities like workW and heatQ, defined
at the trajectory level by [14]

WðτÞ ¼
Z

τ

0

dt _BðtÞ∂BUðrðtÞ; BðtÞÞ;

QðτÞ ¼
Z

τ

0

dt∇rUðrðtÞ; BðtÞÞ∘_r: (4)

In order to make sure that the system is well equilibrated
with a sufficient duration of the pauses, we have compared
the equilibrium heat fluctuations PeqðQÞ in a constant
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FIG. 2 (color online). Probability distribution function (pdf) of
the relative distance between the beads for two values of the
magnetic field, namely B ¼ 0.3 mT (circles) and B ¼ 0.45 mT
(squares). In inset (i), the pdf of the angle θ is shown for these
two magnetic fields with corresponding symbols, and in (ii), the
measurements of the radial diffusion coefficient DrðrÞ (symbols)
are shown as a function of the distance between the beads r
(in unit μm), together with the theoretical prediction using Eq. (3)
(solid line).
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magnetic field with the internal energy fluctuations PðΔUÞ
evaluated in the out of equilibrium experiment, where ΔU
represents the difference of internal energy between the
end and the beginning of the cycle. If the system is well
equilibrated, both distributions PeqðQÞ and PðΔUÞ should
look identical, as they do in Fig. 3 of the Supplemental
Material [10].
Using experimental trajectories corresponding to

τ ¼ 2 s, we find an average work of 3.3� 0.2kBT and a
standard deviation of 3.6kBT. Note that hWi ≥ 0, as
expected from the second law of thermodynamics, which
imposes that the dissipated work, Wdiss ¼ W − ΔF, be on
average positive. In the present case, Wdiss ¼ W since the
free energy difference ΔF ¼ 0 for this symmetric protocol.
We have also evaluated the distribution of the work PðWÞ
represented in Fig. 3, which is non-Gaussian and agrees
with the simulations of Eq. (2). We denote β ¼ 1=kBT.
In the inset, we show that PðWÞ satisfies the Crooks
relation [15]

ln
PðWÞ
Pð−WÞ ¼ βW; (5)

both for the experimental data and for the simulations. We
observe that the relation holds in a smaller range for the
experimental data than for the simulations data due to a
lack of statistics in the experiment (460 trajectories in the
particular experiment of Fig. 3).
In this figure, we also compare simulations of the work

distributions with the state-dependent diffusion coefficient
given by Eq. (3) and with a constant diffusion coefficient
D ¼ 0.03 μm2s−1, corresponding to a typical distance

between the beads. This comparison shows that the dis-
tribution of work is only weakly sensitive to the space
dependence of the diffusion coefficient. We attribute this
to the small excursion experienced by the particles in the
cycle. In principle, if this excursion could be made larger
while still maintaining a sufficient confinement for a cyclic
operation to be possible, one may observe a stronger impact
of the space dependence of the friction coefficient on
thermodynamic quantities. In any case, the present study
of stochastic thermodynamics in the presence of a space-
dependent friction represents our first result.
Until now, hWi could only be evaluated from the

interaction potential, and such a determination had to be
very accurate because a relatively small change of the
control parameter can produce large variations of this
potential. In view of this limitation, it would be interesting
to develop alternative methods to estimate the average
work, which would ideally bypass the need of a precise
calibration of the potential. Since hWi is simply related to
the average dissipation (the system is in contact with a
single thermostat), what we need in fact is an estimate of
the average dissipation using only trajectory information.
On the theoretical side, it has been established that hWdissi
is related to the determination of an arrow of time, by
Jarzynski [16] and by Kawai et al. [17] for Hamiltonian
systems and by Crooks [15] and Gaspard [18] for systems
in contact with a reservoir. In this latter case and for a
reservoir of temperature T, one has the following equality:

βhWdissi ¼ DðPF½cF�∥PR½cR�Þ; (6)

where DðPF∥PRÞ represents the Kullback-Leibler (KL)
divergence between the forward path probability PF
evaluated on the forward trajectory ½cF� and the corre-
sponding probability distribution PR evaluated on the
backward trajectory ½cR�.
In contrast to early studies on fluctuations theorem,

which “verified” a relation like Eq. (5) from a determi-
nation of PðWÞ as done in Fig. 3, the above result suggests
doing just the opposite: namely enforce the fluctuation
relation as a constraint and estimate from it the dissipation
using trajectories information. This is indeed possible, as
shown in [19], via a careful analysis of the continuous times
series of nonequilibrium stationary fluctuations. For dis-
crete time series, a similar idea was put forward in [20] and
recently used by two of us for estimating in a noninvasive
way the dissipation present in chemical reactions [21].
So far, these ideas have not been exploited experimentally
for driven nonstationary systems or for colloids in non-
harmonic potentials.
In order to do so, we now project the path probabilities

PF½cF� onto the probability distribution evaluated at a single
point at time t in the trajectory, namely pFðtÞ. Similarly,
PR½cR� is projected onto the distribution evaluated at the

FIG. 3 (color online). Probability distribution of the work
PðWÞ, constructed from an experiment using 460 cycles
(histogram) and from simulations of Eqs. (2) and (3) with
state-dependent diffusion coefficient (red solid line) and with a
constant diffusion coefficientD ¼ 0.03 μm2s−1 (blue dashed line).
In this experiment, τ ¼ 2 s, τeq ¼ 4 s and the sampling frequency
is 40 Hz. The inset shows the verification of the Crooks relation,
namely the straight solid line, together with the experimental data
(squares) and the simulation results (circles).
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time-symmetric point pRðτ − tÞ. As a result of these projec-
tions, Eq. (6) becomes the following inequality [22], which
holds for any times t and τ:

βhWdissðτÞi ≥ DðpFðtÞ∥pRðτ − tÞÞ: (7)

Now, taking advantage of the symmetry of the protocol, we
can evaluate pR from the forward protocol. In other words,
we record the trajectory at only two points in the cycle: the
first one at a time t after the beginning of the cycle and the
second one at a time τ − t as shown in Fig. 1. We use only
the information contained in the relative distance between
the beads r instead of (r, θ) since our numerical simulations
indicate that reliable estimates of the work can already
be obtained in this way. The probability distribution is
determined from the experimental data after binning the
trajectories, and from these, the KL bound is evaluated as
shown in Fig. 4(a). Note that by construction the bound is
zero at t ¼ 1 s where both measurement points merge
into a single point. More interestingly, there is a maximum
in this bound that occurs roughly halfway through the
second half of the protocol at a time t ¼ 1.6 s, and at this
point a value of about 1.5kBT is obtained. The precise
value of the average dissipation depends on how the KL
divergence is evaluated. While all the estimators agree
with each other when t ≤ 1 s, a notable difference between
them is present near the maximum at t≃ 1.6 s, where a
log divergence occurs in the data due to lack of statistics.

The simplest strategy, namely to discard the points where a
log-divergence occurs, gives the lowest estimate of the KL
divergence. Alternatively, one can either bin the data in
such a way that these divergences do not occur or introduce
a small constant bias in the probabilities equal to 1=460
in order to remove the divergences. Both methods lead
consistently to a higher value, in the range of 1 to 1.5kBT
near this maximum. It is also important to appreciate that
for all times t considered, the KL bound is always smaller
than the value obtained from the “energetic” estimate using
the potential, which gives the constant 3.3� 0.2kBT,
independent of t. This is expected since most of the
information contained in the trajectories has been dis-
carded in the projection step to obtain Eq. (7), and only the
values at two symmetric points were kept. This loss of
information represents a form of coarse graining, which is
known to lead to an underestimation of the dissipation
[17,22,23].
Since an equilibrium probability distribution is typically

better known experimentally than its nonequilibrium
counterpart, one may be tempted to replace the above
comparison between forward and backward nonequili-
brium probabilities, by a comparison between a nonequili-
brium probability distribution, pneqðtÞ, with its equilibrium
counterpart, peqðtÞ. In such a formulation, the equilibrium
distribution must be evaluated at the value of the control
parameter at time t and compared with the nonequilibrium
distribution at the same time t according to [24]:

βhWdissðtÞi ≥ DðpneqðtÞ∥peqðtÞÞ; (8)

where hWdissðtÞi is the average dissipative work evaluated
up to time t. Note that for our specific experimental
conditions, Eq. (8) is only a particular case of Eq. (7)
when the time t ¼ τ. In Fig. 4(b), both sides of the
inequality of Eq. (8) are evaluated for the same exper-
imental data used in Fig. 4(a) as explained in more details in
the Supplemental Material [10]. At large time t, hWdissðtÞi
tends toward the average work determined before. At short
time t, both hWdissðtÞi and DðpneqðtÞ∥peqðtÞÞ should tend
to zero, but a small nonzero value is found in the latter
quantity. We attribute this discrepancy to a small error in
the determination of the interaction potential that enters in
peq. More importantly, the KL bound reaches a maximum
of the order of 1kBT at a time t≃ 1.8 s, so somewhere
within the second half of the cycle. Therefore, the ampli-
tude of the estimated dissipation and its location in time are
both consistent with the determination based on Eq. (7).
To summarize, we have performed a test of stochastic

thermodynamics in a system with a space-dependent
friction, a friction that we have measured experimentally
and characterized with a hydrodynamic model. In a first
step, we have followed an energetic approach based on the
determination of an interaction potential. In many complex
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FIG. 4 (color online). (a) Energy-based estimate of dissipation
expressed in units of kBT (horizontal solid line) compared with
an information-based estimate based on Eq. (7) (symbols) versus
time t. The three estimators correspond to discarding the points
where a log-divergence occurs (blue diamonds), using an adapted
binning (black circles), or adding a small bias equal to 1=460 to
prevent log divergences (red squares). (b) Energy-based estimate
of the dissipated work (black solid line) compared with an
information-based estimate based on Eq. (8) (red squares).
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systems, this energy-based approach is not practical
because the precise determination of the potential is too
cumbersome or simply because there are too many vari-
ables involved. To address this fundamental issue, we have
investigated in a second step, information-theoretic esti-
mations of the average dissipation. Of particular interest
is the general formulation based on Eq. (6), which has the
advantage of not requiring any knowledge of the energetics
of the system or of its equilibrium behavior. Both estimates
are lower than the expected level of dissipation, and to
improve upon this, extensions of this method are needed
to take advantage of the complete information contained in
the trajectories as opposed to only the information in a few
points as done here. Despite this limitation, information-
theoretic estimates are attractive since they are simple to
implement and do not require any knowledge of the
dynamics of the system, a definitive advantage for many
experimental applications. In particular, we envision that
this method could be useful for the monitoring of small
chemical or biochemical reactors [21] or for microrheology
studies of biological systems.
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